LDC

Windward Environmental, LLC 200 West Mercer Street, Suite 401 Seattle, WA 98119 ATTN: Amara Vandervort amarav@windwardenv.com

August 26, 2020

SUBJECT: Duwamish AOC4, Data Validation

Dear Ms. Vandervort,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on August 6, 2020. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #48822:

SDG#	<u>Fraction</u>
20F0466, 20F0471 20F0505	Semivolatiles, Hexachlorobenzene, Polychlorinated Biphenyls, Metals, Wet Chemistry, Polychlorinated Dioxins/Dibenzofurans

The data validation was performed under Stage 2B guidelines. The analyses were validated using the following documents, as applicable to each method:

- Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation; May 2020
- USEPA National Functional Guidelines for Organic Superfund Methods Data Review;
 January 2017
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review;
 January 2017
- USEPA National Functional Guidelines for High Resolution Superfund Methods Data Review; April 2016
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

pgeng@lab-data.com

Project Manager/Senior Chemist

Attachment 1 11,444 pages-ADV LDC #48822 (Windward Environmental, LLC - Seattle WA / Duwamish AOC4) Stage 2B/4 (client Select) EDD **PAHs** Metals Total DATE **SVOA** (8270E (6020A-Dioxins TOC Solids DATE Pest **PCBs** Metals Hg .DC SDG# REC'D DUE (8270E) `-SIM) (8081B) (8082A) (6020A) UCT-KED) (7471B) (1613B) (9060A) (2540G) w s w s s S w s s w sws | w | s | w | s | w | s | w w s W w s W S W S W W Matrix: Water/Sediment 08/06/20 08/27/20 0 | 13 0 12 0 12 0 14 0 0 12 0 12 0 0 12 0 12 20F0466 0 0 8 8 8 0 8 0 0 5 8 В 20F0471 08/06/20 08/27/20 8 0 0 8 0 0 0 8 0 20F0505 08/06/20 08/27/20 0 0 0 0 0 0 0 0 0 21 20 J/PG

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

August 24, 2020

Parameters:

Semivolatiles

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0466

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SS320	20F0466-01	Sediment	06/25/20
LDW20-SS304	20F0466-02	Sediment	06/25/20
LDW20-SS319	20F0466-03	Sediment	06/25/20
LDW20-SS393	20F0466-04	Sediment	06/25/20
LDW20-SS383	20F0466-05	Sediment	06/25/20
LDW20-SS383DL	20F0466-05DL	Sediment	06/25/20
LDW20-SS390	20F0466-06	Sediment	06/25/20
LDW20-SS389	20F0466-07	Sediment	06/25/20
LDW20-SS413	20F0466-08	Sediment	06/25/20
LDW20-SS416	20F0466-09	Sediment	06/25/20
LDW20-SS418	20F0466-10	Sediment	06/25/20
LDW20-SS419	20F0466-11	Sediment	06/25/20
LDW20-SS392	20F0466-12	Sediment	06/25/20
LDW20-SS320MS	20F0466-01MS	Sediment	06/25/20
LDW20-SS320MSD	20F0466-01MSD	Sediment	06/25/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported between 8.2°C and 18.6°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
07/24/20	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	25.8 24.7 24.9	LDW20-SS383DL	J (all detects)	A

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
LDW20-SS383	Phenanthrene Fluoranthene Pyrene	Results exceeded calibration range.	Not reportable	-
LDW20-SS383DL	All compounds except Phenanthrene Fluoranthene Pyrene	Results from undiluted analyses were more usable.	Not reportable	-

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles - Data Qualification Summary - SDG 20F0466

Sample	Compound	Flag	A or P	Reason
LDW20-SS383	Phenanthrene Fluoranthene Pyrene	Not reportable	-	Overall assessment of data
LDW20-SS383DL	All compounds except Phenanthrene Fluoranthene Pyrene	Not reportable	-	Overall assessment of data

Duwamish AOC4 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 20F0466

No Sample Data Qualified in this SDG

Duwamish AOC4
Semivolatiles - Field Blank Data Qualification Summary - SDG 20F0466

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 48822A2a SDG #: 20F0466

Stage 2B

2nd Reviewer:

Laboratory: Analytical Resources, Inc.

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	SW/A	Cooler temps = 18,6°C 8,2°C, 14.4°C (Insufficient
II.	GC/MS Instrument performance check	Δ	
HI.	Initial calibration/ICV	AIA	1946 20% W 1962 CW & 20%
IV.	Continuing calibration	SW	CW = 20%
V.	Laboratory Blanks	A	
VI.	Field blanks	1	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	A	
IX.	Laboratory control samples	Á	UCS SRM
X.	Field duplicates	N'	
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	SW	

Note: A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
	LDW20-SS320	20F0466-01	Sediment	06/25/20
2	LDW20-SS304	20F0466-02	Sediment	06/25/20
	LDW20-SS319	20F0466-03	Sediment	06/25/20
	LDW20-SS393	20F0466-04	Sediment	06/25/20
	LDW20-SS383	20F0466-05	Sediment	06/25/20
i	LDW20-SS383BE DL	20F0466-05PE DL	Sediment	06/25/20
	LDW20-SS390	20F0466-06	Sediment	06/25/20
	LDW20-SS389	20F0466-07	Sediment	06/25/20
	LDW20-SS413	20F0466-08	Sediment	06/25/20
0	LDW20-SS416	20F0466-09	Sediment	06/25/20
1	LDW20-SS418	20F0466-10	Sediment	06/25/20
2	LDW20-SS419	20F0466-11	Sediment	06/25/20
3	LDW20-SS392	20F0466-12	Sediment	06/25/20
14	LDW20-SS320MS	20F0466-01MS	Sediment	06/25/20

SDG Labo	#: 48822A2a #: 20F0466 pratory: Analytical Resource HOD: GC/MS Semivolatile	Re 2nd Re	Date: 08/19/2 Page: ~of ~ eviewer: 5/1/ eviewer: ~		
15	LDW20-SS320MSD		20F0466-01MSD	Sediment	06/25/20
16		 			
17					
18					
Notes	:	 			
	BIG0220-bull				

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1. N-Nitrosodiethylamine
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1. N-Nitrosodi-n-butylamine
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1. N-Nitrosomethylethylamine
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1. N-Nitrosomorpholine
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1. N-Nitrosopyrrolidine
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1. Phenacetin
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1. 2-Acetylaminofluorene
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1. Pronamide
I. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	I1. Methyl methanesulfonate
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1. Ethyl methanesulfonate
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1. o,o',o"-Triethylphosphorothioate
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1. n-Phenylene diamine
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1. 1,4-Naphthoquinone
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1. N-Nitro-o-toluidine
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	OOOO. 1,2-Diphenylhydrazine	O1. 1,3,5-Trinitrobenzene
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1. Pentachlorobenzene
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1. 4-Aminobiphenyl
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1. 2-Naphthylamine
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1. Triphenylene
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1. Octachlorostyrene
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU 2,3,4,6-Tetrachlorophenol	U1. Famphur
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachlorobenzene	V1. 1,4-phenylenediamine
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW 2-Picoline	W1. Methapyrilene
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX. 3-Methylcholanthrene	X1. Pentachloroethane
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. a,a-Dimethylphenethylamine	Y1. 3,3'-Dimethylbenzidine
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ. Hexachloropropene	Z1. o-Toluidine

LDC#: 48822 Ara

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Reviewer: 2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YAN N/A Was a continuing calibration standard analyzed at least once every 12 hours of sample analysis for each instrument? N N/A Y(N) N/A Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

#	Date	Standard ID	Compound	Finding %D (Limit: ≤20.0%)	Finding RRF (Limit: <u>></u> 0.05)	Associated Samples	Qualifications
	07/24/20	NT1420072462	JJJ Kkk	25.8		(() et)	J/WJ/A
	·	,	KKK	24.7 24.9			
			LUL	24.9			J
<u> </u>							
<u> </u>							
							l I
 						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
<u> </u>							
						·	
<u> </u>							
 						 	
<u> </u>							

LDC #: 48822 A2a

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: _	of
Reviewer:	JVG
2nd Reviewer:	N

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

<u>(Y) N N/A</u>

Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
		5	uu, yy 22	> cal range	NR /A
		G	All except above	dil	

Comments:	<u></u>	 	 	 	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

August 24, 2020

Parameters:

Semivolatiles

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0466

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date_
LDW20-SS320	20F0466-01	Sediment	06/25/20
LDW20-SS304	20F0466-02	Sediment	06/25/20
LDW20-SS319	20F0466-03	Sediment	06/25/20
LDW20-SS393	20F0466-04	Sediment	06/25/20
LDW20-SS383	20F0466-05	Sediment	06/25/20
LDW20-SS390	20F0466-06	Sediment	06/25/20
LDW20-SS389	20F0466-07	Sediment	06/25/20
LDW20-SS413	20F0466-08	Sediment	06/25/20
LDW20-SS416	20F0466-09	Sediment	06/25/20
LDW20-SS418	20F0466-10	Sediment	06/25/20
LDW20-SS419	20F0466-11	Sediment	06/25/20
LDW20-SS392	20F0466-12	Sediment	06/25/20
LDW20-SS320MS	20F0466-01MS	Sediment	06/25/20
LDW20-SS320MSD	20F0466-01MSD	Sediment	06/25/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported between 8.2°C and 18.6°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
06/26/20	N-Nitrosodiphenylamine	65.7	All samples in SDG 20F0466	UJ (all non-detects)	А

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
07/17/20	Benzoic acid	23.5	All samples in SDG 20F0466	J (all detects) UJ (all non-detects)	Α
	Pentachlorophenol	44.2		J (all detects) UJ (all non-detects)	

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D and continuing calibration %D, data were qualified as estimated in twelve samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles – Data Qualification Summary - SDG 20F0466

Sample	Compound	Flag	A or P	Reason
LDW20-SS320 LDW20-SS304 LDW20-SS319 LDW20-SS393 LDW20-SS383 LDW20-SS390 LDW20-SS389 LDW20-SS413 LDW20-SS416 LDW20-SS416 LDW20-SS418 LDW20-SS418 LDW20-SS419 LDW20-SS392	N-Nitrosodiphenylamine	UJ (all non-detects)	Α	Initial calibration verification (%D)
LDW20-SS320 LDW20-SS304 LDW20-SS319 LDW20-SS393 LDW20-SS383 LDW20-SS390 LDW20-SS389 LDW20-SS413 LDW20-SS416 LDW20-SS416 LDW20-SS418 LDW20-SS419 LDW20-SS419	Benzoic acid Pentachlorophenol	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	А	Continuing calibration (%D)

Duwamish AOC4

Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 20F0466

No Sample Data Qualified in this SDG

Duwamish AOC4

Semivolatiles - Field Blank Data Qualification Summary - SDG 20F0466

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 48822A2b

SDG #: 20F0466

Stage 2B

Reviewer: 2nd Reviewer:

Laboratory: Analytical Resources, Inc.

SV7A
METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW 846 Method 8270E-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	SW/A	Cooler temps = 18,600 8,200 14.400 (Insufficient)
11.	GC/MS Instrument performance check	Δ,	
111.	Initial calibration/ICV	AISW	10AL E20% rr 16UE 30 d
IV.	Continuing calibration	SW	QN £ 20%
V.	Laboratory Blanks	A	
VI.	Field blanks	1 1	
VII.	Surrogate spikes	L Ä	
VIII.	Matrix spike/Matrix spike duplicates	A	
IX.	Laboratory control samples	A	US SRM
X.	Field duplicates	N	,
XI.	Internal standards	Á	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	<u> </u>	

A = Acceptable Note:

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-SS320	20F0466-01	Sediment	06/25/20
2	LDW20-SS304	20F0466-02	Sediment	06/25/20
3	LDW20-SS319	20F0466-03	Sediment	06/25/20
4	LDW20-SS393	20F0466-04	Sediment	06/25/20
5	LDW20-SS383	20F0466-05	Sediment	06/25/20
6	LDW20-SS390	20F0466-06	Sediment	06/25/20
7	LDW20-SS389	20F0466-07	Sediment	06/25/20
8	LDW20-SS413	20F0466-08	Sediment	06/25/20
9	LDW20-SS416	20F0466-09	Sediment	06/25/20
10	LDW20-SS418	20F0466-10	Sediment	06/25/20
11	LDW20-SS419	20F0466-11	Sediment	06/25/20
12	LDW20-SS392	20F0466-12	Sediment	06/25/20
13	LDW20-SS320MS	20F0466-01MS	Sediment	06/25/20
14	LDW20-SS320MSD	20F0466-01MSD	Sediment	06/25/20

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

WETTIOD: GOTVIO SVOA				
A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1. N-Nitrosodiethylamine
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1. N-Nitrosodi-n-butylamine
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1. N-Nitrosomethylethylamine
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1. N-Nitrosomorpholine
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1. N-Nitrosopyrrolidine
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1. Phenacetin
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1. 2-Acetylaminofluorene
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1. Pronamide
I. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	I1. Methyl methanesulfonate
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1. Ethyl methanesulfonate
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1. o,o',o''-Triethylphosphorothioate
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1. n-Phenylene diamine
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1. 1,4-Naphthoquinone
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1. N-Nitro-o-toluidine
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	OOOO. 1,2-Diphenylhydrazine	O1. 1,3,5-Trinitrobenzene
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1. Pentachlorobenzene
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1. 4-Aminobiphenyl
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1. 2-Naphthylamine
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1. Triphenylene
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1. Octachlorostyrene
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU 2,3,4,6-Tetrachlorophenol	U1. Famphur
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachlorobenzene	V1. 1,4-phenylenediamine
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW 2-Picoline	W1. Methapyrilene
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX. 3-Methylcholanthrene	X1. Pentachloroethane
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. a,a-Dimethylphenethylamine	Y1. 3,3'-Dimethylbenzidine
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ. Hexachloropropene	Z1. o-Toluidine

LDC #: 48822 A26

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

	Page:_	of	1
	Reviewer:_	JVG	
2nd	Reviewer:_	A	

METHOD: GC/MS SVOA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Was an initial calibration verification standard analyzed after each ICAL for each instrument? Were all %D within the validation criteria of ≤20/30% %D? Y KL N/A

YN N/A

# Date	Standard ID	Compound &&	Finding %D (Limit: <2 0.0 %/30%)	Associated Samples	Qualifications
06/26/20	SIF0395-SCV1	QQ	65.7	A11 (ND)	Qualifications J/NJ/A
			+		
					*
_					
					WAR TO THE TOTAL TO
			1		

LDC#: 48822 A26

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:	of!
Reviewer:	_JVG
2nd Reviewer:	ブ
	(

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

SYN N/A Was a continuing calibration standard analyzed at least once every 12 hours of sample analysis for each instrument? Y N N/A Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's? Y(N) N/A

Were all %D and RRFs within the validation criteria of ≤20 %D and ≥0.05 RRF?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit: >0.05)	Associated Samples	Qualifications
	07/17/20	NT14 2067 17035	PPP	23.5		All (ND+Det)	5/NJ/A
	<u> </u>		TT	23,5 44.2			
-							
 							
 				<u> </u>			
ļ							
 							
 							
 							
							

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

August 24, 2020

Parameters:

Hexachlorobenzene

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0466

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SS320	20F0466-01	Sediment	06/25/20
LDW20-SS304	20F0466-02	Sediment	06/25/20
LDW20-SS319	20F0466-03	Sediment	06/25/20
LDW20-SS393	20F0466-04	Sediment	06/25/20
LDW20-SS383	20F0466-05	Sediment	06/25/20
LDW20-SS390	20F0466-06	Sediment	06/25/20
LDW20-SS389	20F0466-07	Sediment	06/25/20
LDW20-SS413	20F0466-08	Sediment	06/25/20
LDW20-SS416	20F0466-09	Sediment	06/25/20
LDW20-SS418	20F0466-10	Sediment	06/25/20
LDW20-SS419	20F0466-11	Sediment	06/25/20
LDW20-SS392	20F0466-12	Sediment	06/25/20
LDW20-SS304MS	20F0466-02MS	Sediment	06/25/20
LDW20-SS304MSD	20F0466-02MSD	Sediment	06/25/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Hexachlorobenzene by Environmental Protection Agency (EPA) SW 846 Method 8081B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported between 8.2°C and 18.6°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4

Hexachlorobenzene - Data Qualification Summary - SDG 20F0466

No Sample Data Qualified in this SDG

Duwamish AOC4

Hexachlorobenzene - Laboratory Blank Data Qualification Summary - SDG 20F0466

No Sample Data Qualified in this SDG

Duwamish AOC4

Hexachlorobenzene - Field Blank Data Qualification Summary - SDG 20F0466

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 48822A3a SDG #: 20F0466

Laboratory: Analytical Resources, Inc.

Stage 2B

Page: _of_ Reviewer:_ 2nd Reviewer:

METHOD: GC Hexachlorobenzene (EPA SW846 Method 8081B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	SW/A	Cooler temps = 18.6°C 8.2°C 14.4°C (this fficient
11.	GC Instrument Performance Check	N	,
111.	Initial calibration/ICV	AIA	1CALE 20? INE 20?
IV.	Continuing calibration	A	CW & 20%
V.	Laboratory Blanks	Δ	
VI.	Field blanks	Ä	
VII.	Surrogate spikes /(5	4/4	
VIII.	Matrix spike/Matrix spike duplicates	A	
IX.	Laboratory control samples	À	ics.
X.	Field duplicates	N	
XI.	Compound quantitation/RL/LOQ/LODs	N	
XII.	Target compound identification	N	·
XIII.	System Performance	N	
XIV	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-SS320	20F0466-01	Sediment	06/25/20
2	LDW20-SS304	20F0466-02	Sediment	06/25/20
3	LDW20-SS319	20F0466-03	Sediment	06/25/20
4	LDW20-SS393	20F0466-04	Sediment	06/25/20
5	LDW20-SS383	20F0466-05	Sediment	06/25/20
6	LDW20-SS390	20F0466-06	Sediment	06/25/20
7	LDW20-SS389	20F0466-07	Sediment	06/25/20
8	LDW20-SS413	20F0466-08	Sediment	06/25/20
9	LDW20-SS416	20F0466-09	Sediment	06/25/20
10	LDW20-SS418	20F0466-10	Sediment	06/25/20
11	LDW20-SS419	20F0466-11	Sediment	06/25/20
12	LDW20-SS392	20F0466-12	Sediment	06/25/20
13	LDW20-SS304MS	20F0466-02MS	Sediment	06/25/20
14	LDW20-SS304MSD	20F0466-02MSD	Sediment	06/25/20
15	BIG0221- BLK1			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: August 25, 2020

Parameters: Polychlorinated Biphenyls

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0466

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SS320	20F0466-01	Sediment	06/25/20
LDW20-SS304	20F0466-02	Sediment	06/25/20
LDW20-SS304DL	20F0466-02DL	Sediment	06/25/20
LDW20-SS319	20F0466-03	Sediment	06/25/20
LDW20-SS393	20F0466-04	Sediment	06/25/20
LDW20-SS383	20F0466-05	Sediment	06/25/20
LDW20-SS390	20F0466-06	Sediment	06/25/20
LDW20-SS389	20F0466-07	Sediment	06/25/20
LDW20-SS413	20F0466-08	Sediment	06/25/20
LDW20-SS416	20F0466-09	Sediment	06/25/20
LDW20-SS416DL	20F0466-09DL	Sediment	06/25/20
LDW20-SS418	20F0466-10	Sediment	06/25/20
LDW20-SS419	20F0466-11	Sediment	06/25/20
LDW20-SS392	20F0466-12	Sediment	06/25/20
LDW20-SS304MS	20F0466-02MS	Sediment	06/25/20
LDW20-SS304MSD	20F0466-02MSD	Sediment	06/25/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported between 8.2°C and 18.6°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Standard	Column	Compound	%D	Associated Samples	Flag	A or P
07/02/20	SIG0056-SCV1	1C	Aroclor-1260	21.8	LDW20-SS320 LDW20-SS304 LDW20-SS319 LDW20-SS393 LDW20-SS390 LDW20-SS389 LDW20-SS413 LDW20-SS416 LDW20-SS418 LDW20-SS418 LDW20-SS419 LDW20-SS392	J (all detects) UJ (all non-detects)	A
07/17/20	SIG0253-SCV1	2C	Aroclor-1260	27.9	LDW20-SS304DL LDW20-SS416DL	J (all detects)	А

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Standard	Column	Compound	%D	Associated Samples	Flag	A or P
07/14/20	SIG0199-CCV5	2C	Aroclor-1254	23.1	LDW20-SS320 LDW20-SS304 LDW20-SS319 LDW20-SS393	J (all detects)	Α

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. Surrogate recoveries (%R) were not within QC limits for sample LDW20-SS304DL. No data were qualified for samples analyzed at greater than or equal to 5X dilution.

All internal standard areas and retention times were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-SS304MS/MSD (LDW20-SS304 LDW20-SS304DL)	Aroclor-1016	194 (56-120)	210 (56-120)	NA	-
LDW20-SS304MS/MSD (LDW20-SS304 LDW20-SS304DL)	Aroclor-1260	20.8 (58-120)	34.7 (58-120)	J (all detects)	А

Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

The sample results for detected compounds from the two columns were within 40% relative percent difference (RPD) with the following exceptions:

Sample	Compound	RPD	Flag	A or P
LDW20-SS393	Aroclor-1248	41.7	J (all detects)	А
LDW20-SS390	Aroclor-1248	48.1	J (all detects)	А
LDW20-SS389	Aroclor-1254	99.7	J (all detects)	Α
LDW20-SS416	Aroclor-1254 Aroclor-1260	43.8 47	J (all detects) J (all detects)	А
LDW20-SS418	Aroclor-1254	41.1	J (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
LDW20-SS304	Aroclor-1248 Aroclor-1254 Aroclor-1260	Results exceeded calibration range.	Not reportable	-
LDW20-SS304DL	All compounds except Aroclor-1248 Aroclor-1254 Aroclor-1260	Results from undiluted analyses were more usable.	Not reportable	-
LDW20-SS416	Aroclor-1248 Aroclor-1254	Results exceeded calibration range.	Not reportable	-

Sample	Compound	Reason	Flag	A or P
LDW20-SS416DL	All compounds except Aroclor-1248 Aroclor-1254	Results from undiluted analyses were more usable.	Not reportable	-

Due to ICV %D, continuing calibration %D, MS/MSD %R, and RPD between two columns, data were qualified as estimated in twelve samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Biphenyls - Data Qualification Summary - SDG 20F0466

Sample	Compound	Flog	A or P	Reason
Sample LDW20-SS320 LDW20-SS319 LDW20-SS383 LDW20-SS380 LDW20-SS389 LDW20-SS413 LDW20-SS416 LDW20-SS418 LDW20-SS418 LDW20-SS419 LDW20-SS392 LDW20-SS304DL	Aroclor-1260	J (all detects) UJ (all non-detects)	A	Initial calibration verification (%D)
LDW20-SS320 LDW20-SS319 LDW20-SS393	Aroclor-1254	J (all detects)	А	Continuing calibration (%D)
LDW20-SS304DL	Aroclor-1260	J (all detects)	Α	Matrix spike/Matrix spike duplicate (%R)
LDW20-SS393 LDW20-SS390	Aroclor-1248	J (all detects)	А	Compound quantitation (RPD between two columns)
LDW20-SS389 LDW20-SS418	Aroclor-1254	J (all detects)	A	Compound quantitation (RPD between two columns)
LDW20-SS416	Aroclor-1260	J (all detects)	A	Compound quantitation (RPD between two columns)
LDW20-SS304	Aroclor-1248 Aroclor-1254 Aroclor-1260	Not reportable	-	Overall assessment of data
LDW20-SS304DL	All compounds except Aroclor-1248 Aroclor-1254 Aroclor-1260	Not reportable	-	Overall assessment of data
LDW20-SS416	Aroclor-1248 Aroclor-1254	Not reportable	-	Overall assessment of data
LDW20-SS416DL	All compounds except Aroclor-1248 Aroclor-1254	Not reportable	-	Overall assessment of data

Duwamish AOC4

Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 20F0466

No Sample Data Qualified in this SDG

Duwamish AOC4

Polychlorinated Riphenyls - Field Blank Data Qualification

Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 20F0466

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

LDC #: 48822A3b SDG #: 20F0466

Stage 2B

Laboratory: Analytical Resources, Inc.

Page: of Reviewer: 1

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	SW/A	Cooler temps. = 18.6°C, 8,2°C, 14.4°C (Insufficient to 60) 1CAL & 20%, CN & 20% CW & 20%
H.	Initial calibration/ICV	AISN	1GAL = 20%, ICHE 20%
111.	Continuing calibration	SW	CW & 20%
IV.	Laboratory Blanks	Á	
V.	Field blanks	N	
VI.	Surrogate spikes / >	SW/A	# 3 NA-di)
VII.	Matrix spike/Matrix spike duplicates	ŚW	'
VIII.	Laboratory control samples	A	LCS SRM
IX.	Field duplicates	Ñ	
X.	Compound quantitation/RL/LOQ/LODs	SIN	
XI.	Target compound identification	N	
LXII	Overall assessment of data	SW	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	LDW20-SS320	20F0466-01	Sediment	06/25/20
2	LDW20-SS304	20F0466-02	Sediment	06/25/20
3	LDW20-SS304RE DL	20F0466-02RED	Sediment	06/25/20
4	LDW20-SS319	20F0466-03	Sediment	06/25/20
5	LDW20-SS393	20F0466-04	Sediment	06/25/20
3	LDW20-SS383	20F0466-05	Sediment	06/25/20
7	LDW20-SS390	20F0466-06	Sediment	06/25/20
3	LDW20-SS389	20F0466-07	Sediment	06/25/20
9	LDW20-SS413	20F0466-08	Sediment	06/25/20
10	LDW20-SS416	20F0466-09	Sediment	06/25/20
11	LDW20-SS416RE DL	20F0466-09RE)L	Sediment	06/25/20
12	LDW20-SS418	20F0466-10	Sediment	06/25/20
13	LDW20-SS419	20F0466-11	Sediment	06/25/20
14	LDW20-SS392	20F0466-12	Sediment	06/25/20
15	LDW20-SS304MS	20F0466-02MS	Sediment	06/25/20
16	LDW20-SS304MSD	20F0466-02MSD	Sediment	06/25/20
17				

BI 60222- 18ch 1

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A. alpha-BHC	K. Endrin	U. Toxaphene	EE. 2,4'-DDT	OO. trans-Heptachlor epoxide
B. beta-BHC	L. Endosulfan II	V. Aroclor-1016	FF. Hexachlorobenzene	PP. Mirex
C. delta-BHC	M. 4,4'-DDD	W. Aroclor-1221	GG, Chlordane	QQ cis-Chlordane
D. gamma-BHC	N. Endosulfan sulfate	X. Aroclor-1232	HH. Chlordane (Technical)	RR. trans-Chlordane
E. Heptachlor	O. 4,4'-DDT	Y. Aroclor-1242	II. Aroclor 1262	SS.
F. Aldrin	P. Methoxychlor	Z. Aroclor-1248	JJ. Aroclor 1268	TT.
G. Heptachlor epoxide	Q. Endrin ketone	AA. Aroclor-1254	KK. Oxychlordane	UU.
H. Endosulfan I	R. Endrin aldehyde	BB. Aroclor-1260	LL. trans-Nonachlor	W
I. Dieldrin	S. alpha-Chlordane	CC. 2,4'-DDD	MM. cis-Nonachlor	ww.
J. 4,4'-DDE	T. gamma-Chlordane	DD. 2,4'-DDE	NN. cis-Heptachlor epoxide	XX.

Notes:	

LDC #: 488 22 A 36

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Page:_	of <u>1</u>
Reviewer:_	JVG
2nd Reviewer:_	ox

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

What type of initial calibration verification calculation was performed? ___%D or ___%R

Was an initial calibration verification standard analyzed after each ICAL for each instrument?

N/A

Did the initial calibration verification standards meet the %D / %R validation criteria of <20.0% / 80-120%?

#	Date	Standard ID	Detector/ Column	Compound	%D (Limit ≤ 20.0)	Associated Samples	Qualifications
Ë		SIG 0056- SC		BB	21.8		J/UJ/A
	6/107/20	3100096-20	V1 1C	VP	21.8	1,2,4-10,12-16 MB (ND + De+)	2/W/A
ļ						(ND + bet)	
ļ							
		SI G0253-SC	v1 2c	BB	27.9	3, 11 (Det)	J/NJ/A
						,	
				-			
	 						
 							
			,				
					1		

48822 A3b LDC #:

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:_	of	1
Reviewer:_	JVG	
2nd Reviewer:_	77	

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualifications below for all questions answered "N" Not applicable questions are identified as "N/A".

Y N MA Were Evaluation mix standards run before initial calibration and before samples? NNA

Were Endrin & 4,4'-DDT breakdowns acceptable in the Evaluation Mix standard (<15.0% for individual breakdowns)?

Was at least one standard run daily to verify the working curve?

Did the continuing calibration standards meet the percent difference (%D) / relative percent difference (RPD) criteria of <20.0%?

Level IV/D Only

Date	e	Standard ID		umn	Compound	%D (Limit ≤ 20.0)	RT (Li	mits)	Associated Samples	Qualifications
67/14	/20	SIG0199-00	15 2	0	AA	23,	()	1, 2, 4 5, 15, 16	MB J/UJ/
							()	(Det)	/
							()		
							()		
							()		
							()		
							()		
							()		
							()		
							()		
							()	<u> </u>	
						ļ	()		
						ļ	()		
							_()		
						<u> </u>	()		
							()		
							()		
							()		
							()		
							()		
							()		
							()	<u> </u>	
						<u> </u>	()_		OO

Y. Aroclor-1242

DD. 2,4'-DDE

II. Aroclor 1262

J. 4,4'-DDE

O. 4,4'-DDT

T. gamma-Chlordane

E. Heptachlor

LDC #: 48822A36

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	of/
Reviewer:_	JVG
2nd Reviewer:_	a

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>X N N/A</u> Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG?

Y/N N/A Was a MS/MSD analyzed every 20 samples for each matrix or whenever a sample extraction was performed? Y/N)N/A

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	MS/MSD ID	Compound	%R (MS (Limits)	%R	MSD (Limits)	RPD (Limits)	Associated Samples	Qualifications
	15/16	V	194	(56-126)	210	(Se-120)	()	2.3 (ND)	
		BB	20.8	(58-120)	34.7	(58-120)	()	(Det)	J deb/A (Va)
				()		()	()		
				()		()	()		
				()		()	()		
				()		()	()		
				()		()	()		
				()		()	()		
<u> </u>				()		()	()		
ļ				()		()	()		
ļ				()		()	()		
				()		()	()		
				()		()	()		
				()		()	()		
				()		()	()		
				()		()	()		
				()		()	()		
				()		()	()		
				()		()	()		
				()		()	()		
		· · · · · · · · · · · · · · · · · · ·		()		()	()		
				()		()	()		
				()		())		
				()		()	,)		
				· · · · ·		()	· · · · · · · · · · · · · · · · · · ·			
				()		, ,	(

LDC #: 48 822 A36

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

Page: _	<u>\</u> of
Reviewer:	JVG
2nd Reviewer:	\mathcal{A}

METHOD: __GC __ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level IV/D Only

Were CRQLs adjusted for sample dilutions, dry weight factors, etc.?

Y N N/A V N/N/A Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

Did the percent difference of detected compounds between two columns./detectors <40%?

If no, please see findings bellow.

#	Compound Name	Sample ID	%RPD/%D Between Two Columns/Detectors Limit (≤ 40%)	Qualifications
	Z	5	41,7	Jdets/X
-	Z	7	48.)	
	AA	8	99.7	
	AA	10	43.8	
-	BB	<i>y</i>	47	
	AA	12	41.1	
	· · · · · · · · · · · · · · · · · · ·			
-				

Comments: See sample calculation verification worksheet for recalculations

LDC #: 48822 Agb

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: _	<u>l</u> _of)
Reviewer:	JVG	
2nd Reviewer:	M	
_	M	_

METHOD: GC Pesticides/PCBs (EPA SW846 Method 8081/8082)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

<u> Y, N N/A</u>

Was the overall quality and usability of the data acceptable?

#	Compound Name	Finding	Associated sample	Qualifications
	Z AA BB	7 cal range	2	NR A
	All except above	dil	3	
	Z, AA	7 cal range	10	
	All except above	dil	11	

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

August 20, 2020

Parameters:

Metals

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0466

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SS320	20F0466-01	Sediment	06/25/20
LDW20-SS304	20F0466-02	Sediment	06/25/20
LDW20-SS319	20F0466-03	Sediment	06/25/20
LDW20-SS393	20F0466-04	Sediment	06/25/20
LDW20-SS383	20F0466-05	Sediment	06/25/20
LDW20-SS390	20F0466-06	Sediment	06/25/20
LDW20-SS389	20F0466-07	Sediment	06/25/20
LDW20-SS413	20F0466-08	Sediment	06/25/20
LDW20-SS416	20F0466-09	Sediment	06/25/20
LDW20-SS418	20F0466-10	Sediment	06/25/20
LDW20-SS419	20F0466-11	Sediment	06/25/20
LDW20-SS392	20F0466-12	Sediment	06/25/20
LDW20-SS320MS	20F0466-01MS	Sediment	06/25/20
LDW20-SS320MSD	20F0466-01MSD	Sediment	06/25/20
LDW20-SS320DUP	20F0466-01DUP	Sediment	06/25/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Arsenic, Cadmium, Chromium, Copper, Lead, Silver, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020A Mercury by EPA SW 846 Method 7471B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the methods.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Raw data were not reviewed for Stage 2B validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4
Metals - Data Qualification Summary - SDG 20F0466

No Sample Data Qualified in this SDG

Duwamish AOC4
Metals - Laboratory Blank Data Qualification Summary - SDG 20F0466

No Sample Data Qualified in this SDG

Duwamish AOC4
Metals - Field Blank Data Qualification Summary - SDG 20F0466

No Sample Data Qualified in this SDG

LDC #: 48822A4a VALIDATION COMPLETENESS WORKSHEET SDG #: 20F0466 Stage 2B

Laboratory: Analytical Resources, Inc.

METHOD: Metals (EPA SW 846 Method 6020A/7471B)

Date:SIGIZO
Page: of \
Reviewer: 2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A.A	
II.	ICP/MS Tune	A	
III.	Instrument Calibration	Α	
IV.	ICP Interference Check Sample (ICS) Analysis	A	
V.	Laboratory Blanks	A	
VI.	Field Blanks	\mathcal{N}	
VII.	Matrix Spike/Matrix Spike Duplicates	A	
VIII.	Duplicate sample analysis	A	
IX.	Serial Dilution	\mathcal{N}	
X.	Laboratory control samples	A	LCS
XI.	Field Duplicates	\mathcal{N}	
XII.	Internal Standard (ICP-MS)	\mathcal{N}	notherieur
XIII.	Sample Result Verification	Ŋ	. /
XIV	Overall Assessment of Data	LA_	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

			<u> </u>	
	Client ID	Lab ID	Matrix	Date
1	LDW20-SS320	20F0466-01	Sediment	06/25/20
2	LDW20-SS304	20F0466-02	Sediment	06/25/20
3	LDW20-SS319	20F0466-03	Sediment	06/25/20
4	LDW20-SS393	20F0466-04	Sediment	06/25/20
5	LDW20-SS383	20F0466-05	Sediment	06/25/20
6	LDW20-SS390	20F0466-06	Sediment	06/25/20
7	LDW20-SS389	20F0466-07	Sediment	06/25/20
8	LDW20-SS413	20F0466-08	Sediment	06/25/20
9	LDW20-SS416	20F0466-09	Sediment	06/25/20
10	LDW20-SS418	20F0466-10	Sediment	06/25/20
11_	LDW20-SS419	20F0466-11	Sediment	06/25/20
12	LDW20-SS392	20F0466-12	Sediment	06/25/20
13	LDW20-SS320MS	20F0466-01MS	Sediment	06/25/20
14	LDW20-SS320MSD	20F0466-01MSD	Sediment	06/25/20
15_	LDW20-SS320DUP	20F0466-01DUP	Sediment	06/25/20

LDC #: 48822A4a

ICP ICP-MS

CVAA

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page 1 of 1 Reviewer:CR

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List			
1 to 12	As, Cd, Cr, Cu, Pb, Ag, Zn, Hg			
QC: 13-15	As, Cd, Cr, Cu, Pb, Ag, Zn, Hg			
	Analysis Method			

As, Cd, Cr, Cu, Pb, Ag, Zn

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: August 20, 2020

Parameters: Wet Chemistry

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0466

Sample Identification	Laboratory Sample	Matrix	Collection Date
LDW20-SS320	20F0466-01	Sediment	06/25/20
LDW20-SS304	20F0466-02	Sediment	06/25/20
LDW20-SS319	20F0466-03	Sediment	06/25/20
LDW20-SS393	20F0466-04	Sediment	06/25/20
LDW20-SS383	20F0466-05	Sediment	06/25/20
LDW20-SS390	20F0466-06	Sediment	06/25/20
LDW20-SS389	20F0466-07	Sediment	06/25/20
LDW20-SS413	20F0466-08	Sediment	06/25/20
LDW20-SS416	20F0466-09	Sediment	06/25/20
LDW20-SS418	20F0466-10	Sediment	06/25/20
LDW20-SS419	20F0466-11	Sediment	06/25/20
LDW20-SS392	20F0466-12	Sediment	06/25/20
LDW20-SS320MS	20F0466-01MS	Sediment	06/25/20
LDW20-SS320DUP	20F0466-01DUP	Sediment	06/25/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

Total Solids by Standard Method 2540G

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the methods. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4
Wet Chemistry - Data Qualification Summary - SDG 20F0466

No Sample Data Qualified in this SDG

Duwamish AOC4
Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 20F0466

No Sample Data Qualified in this SDG

Duwamish AOC4
Wet Chemistry - Field Blank Data Qualification Summary - SDG 20F0466

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 48822A6 Stage 2B SDG #: 20F0466 Laboratory: Analytical Resources, Inc. Reviewer: 2nd Reviewer: METHOD: (Analyte) TOC (EPA SW846 Method 9060A), Total Solids (SM 2540G) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. Validation Area Comments Sample receipt/Technical holding times 1. 11 Initial calibration III. Calibration verification A IV Laboratory Blanks ٧ Field blanks VI. Matrix Spike/Matrix Spike Duplicates VII. Duplicate sample analysis VIII. Laboratory control samples IX. Field duplicates X. Sample result verification ΧI Overall assessment of data Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank N = Not provided/applicable R = Rinsate TB = Trip blank OTHER: FB = Field blank SW = See worksheet EB = Equipment blank **Client ID** Lab ID Matrix Date LDW20-SS320 20F0466-01 Sediment 06/25/20 LDW20-SS304 20F0466-02 Sediment 06/25/20 3 LDW20-SS319 20F0466-03 Sediment 06/25/20 LDW20-SS393 20F0466-04 Sediment 06/25/20 LDW20-SS383 20F0466-05 Sediment 06/25/20 LDW20-SS390 6 20F0466-06 Sediment 06/25/20 LDW20-SS389 20F0466-07 Sediment 06/25/20 LDW20-SS413 20F0466-08 Sediment 06/25/20 LDW20-SS416 20F0466-09 06/25/20 Sediment

14 LDW20-SS320DUP 20F0466-01DUP Sediment 06/25/20
15 Notes:

20F0466-10

20F0466-11

20F0466-12

20F0466-01MS

Sediment

Sediment

Sediment

Sediment

06/25/20

06/25/20

06/25/20

06/25/20

10

11

12

13

LDW20-SS418

LDW20-SS419

LDW20-SS392

LDW20-SS320MS

LDC #: 48822A6

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page 1 of 1 Reviewer:CR

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
1 to 12	Total solids, TOC
QC: 13, 15	тос

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

August 24, 2020

Parameters:

Polychlorinated Dioxins/Dibenzofurans

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0466

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SS320	20F0466-01	Sediment	06/25/20
LDW20-SS304	20F0466-02	Sediment	06/25/20
LDW20-SS389	20F0466-07	Sediment	06/25/20
LDW20-SS419	20F0466-11	Sediment	06/25/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for High Resolution Superfund Methods Data Review (April 2016). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) Method 1613B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported between 8.2°C and 18.6°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were within the QC limits for unlabeled compounds and labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration results were within the QC limits for unlabeled compounds and labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BIG0062-BLK1	07/09/20	1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	0.0645 ng/Kg 0.319 ng/Kg 0.727 ng/Kg 2.68 ng/Kg	All samples in SDG 20F0466

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Ongoing Precision Recovery/Standard Reference Materials

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
All samples in SDG 20F0466	All compounds reported as estimated maximum possible concentration (EMPC) and greater than the reporting limit.	J (all detects)	A

Sample	Compound	Flag	A or P
All samples in SDG 20F0466	All compounds reported as estimated maximum possible concentration (EMPC) and less than the reporting limit.	U (all non-detects)	A
LDW20-SS304 LDW20-SS389	All compounds flagged "X" due to chlorinated diphenyl ether (CDPE) interference.	J (all detects)	А

Sample	Compound	Finding	Criteria	Flag	A or P
LDW20-SS304	OCDD	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects)	Р

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to compounds reported as EMPC, CDPE interference, and results exceeding calibration range, data were as estimated or not detected in four samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 20F0466

Sample	Compound	Flag	A or P	Reason
LDW20-SS320 LDW20-SS304 LDW20-SS389 LDW20-SS419	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	Α	Compound quantitation (EMPC)
LDW20-SS320 LDW20-SS304 LDW20-SS389 LDW20-SS419	All compounds reported as estimated maximum possible concentration (EMPC) and less than the reporting limit.	U (all non-detects)	А	Compound quantitation (EMPC)
LDW20-SS304 LDW20-SS389	All compounds flagged "X" due to chlorinated diphenyl ether (CDPE) interference.	J (all detects)	А	Compound quantitation (CDPE interference)
LDW20-SS304	OCDD	J (all detects)	Р	Compound quantitation (exceeded range)

Duwamish AOC4

Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 20F0466

No Sample Data Qualified in this SDG

Duwamish AOC4

Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG 20F0466

No Sample Data Qualified in this SDG

SDG i	#:48822A21 VALIDATIO #:20F0466 atory: <u>Analytical Resources, Inc.</u>		LETENES tage 2B	S WORKSHEET		Date: <u>08/19/2</u> Page: <u>l</u> of <u>l</u> Reviewer: <u>M</u> Reviewer: <u>r</u>
METH	HOD: HRGC/HRMS Polychlorinated Diox	ins/Dibenzo	ofurans (EPA	Method 1613B)	2110 K	deviewer:/
	amples listed below were reviewed for ea tion findings worksheets.	ach of the fo	llowing valida	ation areas. Validati	on findings are r	noted in attached
	Validation Area			Comr	nents	
ı I.	Sample receipt/Technical holding times	SW/A	cooler te	mps = 18.6°C,	8.20 14.90	Ensufficient time to
II.	HRGC/HRMS Instrument performance check	A				
III.	Initial calibration/ICV	AIA	ICAL	£ 20/357.	lave	ac limits
IV.	Continuing calibration	A	COV	E&c limits		
V.	Laboratory Blanks	SW				
VI.	Field blanks					
VII.	Matrix spike/Matrix spike duplicates	N				
VIII.	Laboratory control samples	A	OP	R SRM		
IX.	Field duplicates	N				
X.	Labeled Compounds	A				
XI.	Compound quantitation RL/LOQ/LODs	SIM	E	mpc = Jdel	3	
XII.	Target compound identification	N				
XIII.	System performance	N				
XIV.	Overall assessment of data	A				
lote:	N = Not provided/applicable R = Rin	lo compounds nsate ield blank	detected	D = Duplicate TB = Trip blank EB = Equipment bla	SB=Sourc OTHER: nk	ce blank
	Client ID			Lab ID	Matrix	Date
1	LDW20-SS320			20F0466-01	Sediment	06/25/20
2	LDW20-SS304			20F0466-02	Sediment	06/25/20
3	LDW20-SS389			20F0466-07	Sediment	06/25/20
4	LDW20-SS419			20F0466-11	Sediment	06/25/20
5						
6						
7	,					
8						
9						
10						
lotes:						
\perp						

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:		

LDC #: 48822 A21

VALIDATION FINDINGS WORKSHEET

Page:_	of	1
Reviewer:	JVG	
2nd Reviewer:	19	
_		

				Diaiii	<u> </u>				2nd Reviewe	
Y N N/A Was a m	below for all que samples associa ethod blank peri method blank co	estions answer ated with a me formed for eac	ed "N". Not a thod blank? h matrix and	pplicable que		tion was perfo		Ail	(7 5X)	
Compound	Blank ID				Sam	ple Identification	on			
30,000	BIG0062	BLKI (5X)								
6	0.0645 *	0.3225								
F	0.319 *	1.595								
Q	0.727 +	3.635								
9	2,68	13.4								
	* EMPC					-			_	
Blank extraction date:_ Conc. units:	Blank a	analysis date:		sociated Sam	ples:					
Compound	Blank ID				Sam	ple Identification	on			

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

LDC #: 48822 A 21

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported RLs

Page: <u>1</u> of <u>1</u> Reviewer: __JVG 2nd Reviewer: ______

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y) N N/A Were the correct labeled compound, quantitation ions and relative response factors (RRF) used to quantitate the compound? X N N/A

Compound quantitation and RLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

#	Date	Sample ID	Compound	Finding	Qualifications
		ÁΙΙ		All results flagged as EMPC > RL	Jdets/A
				All results flagged as EMPC > RL	u/A
		2,3		All results flagged "X" by the lab due to chlorinated	Jdets/A
		!		diphenyl ether (CDPE) interference	
		2	G	7 cal range	Jdts/p
					'
			<u> </u>		

Comments:	 	 	 	 			 	
				 		 		,

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

August 24, 2020

Parameters:

Semivolatiles

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0471

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SS424	20F0471-01	Sediment	06/26/20
LDW20-SS268	20F0471-02	Sediment	06/26/20
LDW20-SS266	20F0471-03	Sediment	06/26/20
LDW20-SS258	20F0471-04	Sediment	06/26/20
LDW20-SS257	20F0471-05	Sediment	06/26/20
LDW20-SS228	20F0471-06	Sediment	06/26/20
LDW20-SS236	20F0471-07	Sediment	06/26/20
LDW20-SS247	20F0471-08	Sediment	06/26/20
LDW20-SS424MS	20F0471-01MS	Sediment	06/26/20
LDW20-SS424MSD	20F0471-01MSD	Sediment	06/26/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported between 12.3°C and 14.4°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
LDW20-SS424MS/MSD (LDW20-SS424)	Naphthalene Acenaphthene Fluorene Anthracene Benzofluoranthenes, total Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Benzo(g,h,i)perylene	36.6 (43-120) 27.7 (45-120) 26.4 (45-120) 4.87 (45-120) 14.7 (30-160) 0.731 (42-120) 40.6 (42-123) 35.8 (38-126)	40.9 (43-120) 32.5 (45-120) 20.9 (45-120) 10.9 (45-120) 17.3 (30-160) 2.97 (42-120) 40.4 (42-123) 35.7 (38-126)	J (all detects)	A
LDW20-SS424MS/MSD (LDW20-SS424)	Phenanthrene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	-227 (49-120) -177 (53-120) -179 (48-121) -21.4 (49-120) -33.6 (47-120)	-216 (49-120) -173 (53-120) -177 (48-121) -17.8 (49-120) -32.9 (47-120)	J (all detects)	A

Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits with the following exceptions:

SRM ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
BIG0254-SRM1	Naphthalene 2-Methylnaphthalene Acenaphthene	18.2 (41-159) 32.5 (51-149) 58.4 (59-141)	All samples in SDG 20F0471	J (all detects) UJ (all non-detects)	Р

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to MS/MSD %R and SRM %R, data were qualified as estimated in eight samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles - Data Qualification Summary - SDG 20F0471

Sample	Compound	Flag	A or P	Reason
LDW20-SS424	Naphthalene Acenaphthene Fluorene Anthracene Benzofluoranthenes, total Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Benzo(g,h,i)perylene Phenanthrene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	J (all detects)	A	Matrix spike/Matrix spike duplicate (%R)
LDW20-SS424 LDW20-SS268 LDW20-SS266 LDW20-SS258 LDW20-SS257 LDW20-SS228 LDW20-SS236 LDW20-SS247	Naphthalene 2-Methylnaphthalene Acenaphthene	J (all detects) UJ (all non-detects)	Р	Standard reference materials (%R)

Duwamish AOC4

Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 20F0471

No Sample Data Qualified in this SDG

Duwamish AOC4

Semivolatiles - Field Blank Data Qualification Summary - SDG 20F0471

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 48822B2a SDG #: 20F0471

Stage 2B

Laboratory: Analytical Resources, Inc.

Reviewer: 2nd Reviewer:

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	SW/A	Cooler temps = 14.4% 12.3% (Insufficient time to cool
H.	GC/MS Instrument performance check	A .	,
III.	Initial calibration/ICV	AIA	ICAL = 20? ICH = 30?
IV.	Continuing calibration	`A	CW = 20?
V.	Laboratory Blanks	À	
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	ξ. Μ	
IX.	Laboratory control samples	SW	LCS SRM
X.	Field duplicates	7	
XI.	Internal standards	٨	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

<u> </u>	Client ID	Lab ID	Matrix	Date
1	LDW20-SS424	20F0471-01	Sediment	06/26/20
2	LDW20-SS268	20F0471-02	Sediment	06/26/20
3	LDW20-SS266	20F0471-03	Sediment	06/26/20
4	LDW20-SS258	20F0471-04	Sediment	06/26/20
5	LDW20-SS257	20F0471-05	Sediment	06/26/20
6	LDW20-SS228	20F0471-06	Sediment	06/26/20
7	LDW20-SS236	20F0471-07	Sediment	06/26/20
8	LDW20-SS247	20F0471-08	Sediment	06/26/20
9	LDW20-SS424MS	20F0471-01MS	Sediment	06/26/20
10	LDW20-SS424MSD	20F0471-01MSD	Sediment	06/26/20
11				
12				
13	BIG@254-BUK[
14				

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1. N-Nitrosodiethylamine
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1. N-Nitrosodi-n-butylamine
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1. N-Nitrosomethylethylamine
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1. N-Nitrosomorpholine
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1. N-Nitrosopyrrolidine
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1. Phenacetin
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1. 2-Acetylaminofluorene
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1. Pronamide
I. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	I1. Methyl methanesulfonate
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1. Ethyl methanesulfonate
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1. o,o',o"-Triethylphosphorothioate
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1. n-Phenylene diamine
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1. 1,4-Naphthoquinone
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1. N-Nitro-o-toluidine
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	OOOO. 1,2-Diphenylhydrazine	O1. 1,3,5-Trinitrobenzene
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1. Pentachlorobenzene
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1. 4-Aminobiphenyl
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1. 2-Naphthylamine
S. Naphṭhalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1. Triphenylene
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1. Octachlorostyrene
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU 2,3,4,6-Tetrachlorophenol	U1. Famphur
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachlorobenzene	V1. 1,4-phenylenediamine
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW 2-Picoline	W1. Methapyrilene
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX. 3-Methylcholanthrene	X1. Pentachloroethane
Y. 2,4,6-Trichlorophenol	YY, Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. a,a-Dimethylphenethylamine	Y1. 3,3'-Dimethylbenzidine
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ. Hexachloropropene	Z1. o-Toluidine

A2. Benzofluoranthenes, Total

LDC #: 48822 Bra

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:	of <u>_</u> _
Reviewer:	ĴΛΘ ,
2nd Reviewer:	47

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>ÝN N/A</u> Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an

associated MS/MSD. Soil / Water.

YNN/A Was a MS/MSD analyzed every 20 samples of each matrix?

Y(N)N/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		9/16	See	attached)	()	()	(All Det) (2	Qualifications R) J/WJ/A, J/
				()	()	()		14
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
			·	()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()	:	
				()	()	()		
				()	()	()		
				()	()	()		

MS / MS DUPLICATE RECOVERY EPA 8270E

Laboratory: <u>Analytical Resources, Inc.</u>

SDG:

20F0471

Client:

Anchor QEA, LLC

Project:

Lower Duwamish AOC4

Matrix:

Solid

Analyzed:

07/21/20 15:00

Batch:

bond

Laboratory ID:

BIG0254-MS1

Preparation:

BIG0254
EPA 3546 (Microwave)

Sequence Name:

Matrix Spike

Initial/Final:

16.95 g / 1 mL

Source Sample: LDW20-SS424

COMPOUND		SPIKE ADDED (ug/kg dry)	SAMPLE CONCENTRATION (ug/kg dry)	Q	MS CONCENTRATION (ug/kg dry)	Q	MS % REC.#	QC LIMITS REC.
Phenol		499	21.2		347		65.3	34 - 120
4-Methylphenol		499	18.8	J	385		73.4	29 - 120
Naphthalene	S	499	152		335	*	36.6 *	43 - 120 Jus
2-Methylnaphthalene		499	56.4		355		59.9	43 - 120
Acenaphthylene		499	34.5		380		69.2	42 - 120
Dimethylphthalate		499	ND	U	420		84.2	43 - 120
Acenaphthene	66	499	208		347	*	27.7 *	45 - 120 Just
Dibenzofuran		499	121		378		51.5	43 - 120
Fluorene	27	499	240		372	*	26.4 *	45 - 120 J/VJ/
Phenanthrene	ии	499	1520		385	*	-227 *	49-120 J/R/2
Anthracene	√√	499	334		359	*	4.87 *	45 - 120 J/WS/
Fluoranthene	77	499	1310		425	*	-177 *	53-120 5/2/1
Pyrene	22	499	1380		483	*	-179 *	48 - 121
Butylbenzylphthalate		499	ND	U	389		78.0	45 - 132
Benzo(a)anthracene	ccc	499	468		362	*	-21.4 *	49 - 120
Chrysene	DDD	499	576		409	*	-33.6 *	47 - 120
bis(2-Ethylhexyl)phthalate		499	92.8		576		96.8	34 - 130
Benzofluoranthenes, Total	A2	997	707		854	*	14.7 *	30 - 160 J
Benzo(a)pyrene	LII	499	376		379	*	0.731 *	42 - 120
Indeno(1,2,3-cd)pyrene	III	499	216		418	*	40.6 *	42 - 123
Dibenzo(a,h)anthracene		499	95.3		393		59.8	30 - 133
Benzo(g,h,i)perylene	LLL	499	229		407	*	35.8 *	38 - 126

^{*} Values outside of QC limits

P. 1 of 2

Batch:

MS / MS DUPLICATE RECOVERY **EPA 8270E**

Analytical Resources, Inc. SDG: 20F0471 Laboratory:

Client: Anchor QEA, LLC Project: Lower Duwamish AOC4

Solid Analyzed: 07/21/20 15:38 Matrix: BIG0254 Laboratory ID: BIG0254-MSD1

Preparation: EPA 3546 (Microwave) Sequence Name: Matrix Spike Dup

Initial/Final: $\underline{17.12~g/1~mL}$ Source Sample: LDW20-SS424

		MSD	MSD			QC	LIMITS	
COMPOUND		ADDED (ug/kg dry)	CONCENTRATION (ug/kg dry)	Q	% REC. #	% RPD #	RPD	REC.
Phenol		494	352		67.0	1.48	30	34 - 120
4-Methylphenol		494	388		74.7	0.809	30	29 - 120
Naphthalene	S	494	354	*	40.9 *	5.59	30	43 - 120 J/
2-Methylnaphthalene		494	376		64.7	5.64	30	43 - 120
Acenaphthylene		494	406		75.2	6.68	30	42 - 120
Dimethylphthalate		494	442		89.5	5.17	30	43 - 120
Acenaphthene	GG	494	369	*	32.5 *	6.14	30	45 - 120 J/
Dibenzofuran		494	395		55.4	4.30	30	43 - 120
Fluorene	NN	494	344	*	20.9 *	7.98	30	45 - 120 J/K
Phenanthrene	uu	494	451	*	-216 *	15.7	30	45 - 120 J/M 49 - 120 J/M 45 - 120 J/M 53 - 120 J/M
Anthracene	٧٧	494	388	*	10.9 *	7.94	30	45 - 120 J /
Fluoranthene	77	494	456	*	-173 *	7.00	30	53 - 120 5/
Pyrene	ZZ	494	503	*	-177 *	3.95	30	48 - 121
Butylbenzylphthalate		494	404		81.9	3.90	30	45 - 132
Benzo(a)anthracene	ccc	494	380	*	-17.8 *	5.08	30	49 - 120
Chrysene	DDD	494	414	*	-32.9 *	1.23	30	47 - 120
bis(2-Ethylhexyl)phthalate		494	546		91.8	5.28	30	34 - 130
Benzofluoranthenes, Total	A2	987	878	*	17.3 *	2.75	30	30 - 160 J
Benzo(a)pyrene	III	494	390	*	2.97 *	2.87	30	42 - 120
Indeno(1,2,3-cd)pyrene	JJJ	494	416	*	40.4 *	0.679	30	42 - 123
Dibenzo(a,h)anthracene		494	395		60.7	0.414	30	30 - 133
Benzo(g,h,i)perylene	レレレ	494	405	*	35.7 *	0.544	30	38 - 126

^{*} Values outside of QC limits

p. 2 of 2

LDC #: 48822 BZA

VALIDATION FINDINGS WORKSHEET <u>Laboratory Control Samples (LCS)</u> /SR M

Page: __l_of__\
Reviewer: __JVG

2nd Reviewer: __<

METHOD: GC/MS BNA (EPA SW 846 Method 8270 \$\frac{1}{27}\$

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y) N N/A Wa

Was a LCS required?

N N/A Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	BIG0254-SRM	1 S	18.2 (11-159)	()	()	All (ND +Det)	J/WJ/P
		W	32.5 (51-149)	()	()		
		GG	58.9 (59-141)	()	()	<u> </u>	y
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()		()_		
		1	()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

August 24, 2020

Parameters:

Semivolatiles

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0471

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SS424	20F0471-01	Sediment	06/26/20
LDW20-SS268	20F0471-02	Sediment	06/26/20
LDW20-SS266	20F0471-03	Sediment	06/26/20
LDW20-SS258	20F0471-04	Sediment	06/26/20
LDW20-SS257	20F0471-05	Sediment	06/26/20
LDW20-SS228	20F0471-06	Sediment	06/26/20
LDW20-SS236	20F0471-07	Sediment	06/26/20
LDW20-SS247	20F0471-08	Sediment	06/26/20
LDW20-SS424MS	20F0471-01MS	Sediment	06/26/20
LDW20-SS424MSD	20F0471-01MSD	Sediment	06/26/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported between 12.3°C and 14.4°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
06/26/20	N-Nitrosodiphenylamine	41.9	All samples in SDG 20F0471	J (all detects) UJ (all non-detects)	А

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
07/21/20	Pentachlorophenol	41.4	All samples in SDG 20F0471	J (all detects) UJ (all non-detects)	А

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits with the following exceptions:

SRM ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
BIG0254-SRM2	1,2-Dichlorobenzene	11.7 (17-184)	All samples in SDG 20F0471	J (all detects) UJ (all non-detects)	Р

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D, continuing calibration %D, and SRM %R, data were qualified as estimated in eight samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles – Data Qualification Summary - SDG 20F0471

Sample	Compound	Flag	A or P	Reason
LDW20-SS424 LDW20-SS268 LDW20-SS266 LDW20-SS258 LDW20-SS257 LDW20-SS228 LDW20-SS228 LDW20-SS236 LDW20-SS247	N-Nitrosodiphenylamine	J (all detects) UJ (all non-detects)	Α	Initial calibration verification (%D)
LDW20-SS424 LDW20-SS268 LDW20-SS266 LDW20-SS258 LDW20-SS257 LDW20-SS228 LDW20-SS228 LDW20-SS236 LDW20-SS247	Pentachlorophenol	J (all detects) UJ (all non-detects)	А	Continuing calibration (%D)
LDW20-SS424 LDW20-SS268 LDW20-SS266 LDW20-SS258 LDW20-SS257 LDW20-SS228 LDW20-SS236 LDW20-SS247	1,2-Dichlorobenzene	J (all detects) UJ (all non-detects)	Р	Standard reference materials (%R)

Duwamish AOC4

Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 20F0471

No Sample Data Qualified in this SDG

Duwamish AOC4

Semivolatiles - Field Blank Data Qualification Summary - SDG 20F0471

No Sample Data Qualified in this SDG

LDC #: 48822B2b VALIDATION COMPLETENESS WORKSHEET SDG #: 20F0471 Stage 2B Page: of Delivery: Analytical Resources, Inc. SVOA METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW 846 Method 8270E-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
ı.	Sample receipt/Technical holding times	SN/A	Cooler temps = 14,4°C, 12,3°C (Insufficient time to cool)
11.	GC/MS Instrument performance check	A'	
III.	Initial calibration/ICV	A'sW	10AL = 20/2 rz love 30 ?.
IV.	Continuing calibration	SW	10AL = 20/3 rr 10V= 30%.
V.	Laboratory Blanks	Á	
VI.	Field blanks		
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	À	
IX.	Laboratory control samples	Z.	LCS , SRM
X.	Field duplicates	2	
XI.	Internal standards	Á	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank OTHER:
SW = See worksheet FB = Field blank EB = Equipment blank

	Client ID	Lab ID	Matrix	Date
1	LDW20-SS424	20F0471-01	Sediment	06/26/20
2	LDW20-SS268	20F0471-02	Sediment	06/26/20
3	LDW20-SS266	20F0471-03	Sediment	06/26/20
4	LDW20-SS258	20F0471-04	Sediment	06/26/20
5	LDW20-SS257	20F0471-05	Sediment	06/26/20
6	LDW20-SS228	20F0471-06	Sediment	06/26/20
7_	LDW20-SS236	20F0471-07	Sediment	06/26/20
8	LDW20-SS247	20F0471-08	Sediment	06/26/20
9	LDW20-SS424MS	20F0471-01MS	Sediment	06/26/20
10	LDW20-SS424MSD	20F0471-01MSD	Sediment	06/26/20
11_			i	
12_				
13	BI 60254-BKY			
14				

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1. N-Nitrosodiethylamine
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1. N-Nitrosodi-n-butylamine
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1. N-Nitrosomethylethylamine
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1. N-Nitrosomorpholine
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1. N-Nitrosopyrrolidine
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1. Phenacetin
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1. 2-Acetylaminofluorene
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1. Pronamide
I. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	I1. Methyl methanesulfonate
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1. Ethyl methanesulfonate
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1. o,o',o"-Triethylphosphorothioate
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1. n-Phenylene diamine
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1. 1,4-Naphthoquinone
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1. N-Nitro-o-toluidine
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	OOOO. 1,2-Diphenylhydrazine	O1. 1,3,5-Trinitrobenzene
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1. Pentachlorobenzene
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1. 4-Aminobiphenyl
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1. 2-Naphthylamine
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1. Triphenylene
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1. Octachlorostyrene
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU 2,3,4,6-Tetrachlorophenol	U1. Famphur
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachlorobenzene	V1. 1,4-phenylenediamine
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW 2-Picoline	W1. Methapyrilene
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX. 3-Methylcholanthrene	X1. Pentachloroethane
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. a,a-Dimethylphenethylamine	Y1. 3,3'-Dimethylbenzidine
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ. Hexachloropropene	Z1. o-Toluidine

LDC #: 488 22 \$ 26

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Page:_	of
Reviewer:_	JVG
2nd Reviewer:_	18:

METHOD: GC/MS SVOA (EPA SW 846 Method 8270 5-5(M)
Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

VN N/A Was an initial calibration verification standard analyzed after each ICAL for each instrument?

Y(N) N/A Were all %D within the validation criteria of ≤20/30% %D?

#	Date	Standard ID	Compound	Finding % D (Limit: < <u>20</u> :0%/30%)	Associated Samples All (ND + D-+)	Qualifications
(6/24/20	SIF0393-SCV1	QQ.	41.9	A11 (ND + D+7)	J/uJ/A
					·	
				<u> </u>		
				ļ		
-						
				 		
				ļ		
!						

LDC #: 48822 B26

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:_	of
Reviewer:_	`JVG
2nd Reviewer:	9
-	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours of sample analysis Were percent differences (%D) and relative response factors (RRF) within method criteria for all the same percent differences (%D) and relative response factors (RRF) within method criteria for all the same percent differences (%D) and relative response factors (RRF) within method criteria for all the same percent differences (%D) and relative response factors (RRF) within method criteria for all the same percent differences (%D) and relative response factors (RRF) within method criteria for all the same percent differences (%D) and relative response factors (RRF) within method criteria for all the same percent differences (%D) and relative response factors (RRF) within method criteria for all the same percent differences (%D) and relative response factors (RRF) within method criteria for all the same percent differences (%D) and relative response factors (RRF) within method criteria for all the same percent differences (%D) and relative response factors (RRF) within method criteria for all the same percent differences (%D) and relative response factors (RRF) within method criteria for all the same percent differences (%D) and relative response factors (RRF) within method criteria for all the same percent differences (%D) and relative response factors (RRF) within method criteria for all the same percent differences (%D) and relative response factors (RRF) within method criteria for all the same percent differences (%D) and relative response factors (RRF) within method criteria for all the same percent differences (%D) and relative response factors (RRF) within method criteria for all the same percent differences (RRF) within method criteria for all the same percent differences (RRF) within the same percent differences (RRF) within the same percent differences Was a continuing calibration standard analyzed at least once every 12 hours of sample analysis for each instrument? Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit: <u>></u> 0.05)	Associated Samples	Qualifications
07/21/20	NT10200721635	TT	41.4		All (No + Det)	J/NJ/A
				-		***************************************
	+					
 					 	
	1				 	
 	+				 	
						
	-					
					 	
					 	
-						
					ļ	
			_			
 	 			*		

LDC #: 48822 B26

N N/A

VALIDATION FINDINGS WORKSHEET <u>Laboratory Control Samples (LCS)</u> | CRIM

Page:	of
Reviewer:	JVG
nd Reviewer:	~

METHOD: GC/MS BNA (EPA SW 846 Method 8270 15-51 m)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Was a LCS required?

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	BI G0254- SRN	12 F	11.7 (17-184)	()	()	All (ND+Det)	J/UJ /P
		•	()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
 			()	()	()		
			()	()	()		
			()	()	()		
			()	()	<u> </u>		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
-			()	, ,	()		
			()	()	()		
			()	()	, ,		
			-				
			, ,	()			
-			, ,	()	()		
			()	()	, ,		
-			(,	, ,	()		
			()	()	()		
			()	()	()		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

August 24, 2020

Parameters:

Hexachlorobenzene

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0471

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SS424	20F0471-01	Sediment	06/26/20
LDW20-SS268	20F0471-02	Sediment	06/26/20
LDW20-SS266	20F0471-03	Sediment	06/26/20
LDW20-SS258	20F0471-04	Sediment	06/26/20
LDW20-SS257	20F0471-05	Sediment	06/26/20
LDW20-SS228	20F0471-06	Sediment	06/26/20
LDW20-SS236	20F0471-07	Sediment	06/26/20
LDW20-SS247	20F0471-08	Sediment	06/26/20
LDW20-SS424MS	20F0471-01MS	Sediment	06/26/20
LDW20-SS424MSD	20F0471-01MSD	Sediment	06/26/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Hexachlorobenzene by Environmental Protection Agency (EPA) SW 846 Method 8081B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported between 12.3°C and 14.4°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4 Hexachlorobenzene - Data Qualification Summary - SDG 20F0471

No Sample Data Qualified in this SDG

Duwamish AOC4 Hexachlorobenzene - Laboratory Blank Data Qualification Summary - SDG 20F0471

No Sample Data Qualified in this SDG

Duwamish AOC4
Hexachlorobenzene - Field Blank Data Qualification Summary - SDG 20F0471

No Sample Data Qualified in this SDG

SDG	#:48822B3aVALIDATIO #:_20F0471 ratory:_Analytical Resources, Inc.		LETENE : tage 2B	SS WORKSHEET		Date: o8/19/A Page: \of \of \of deviewer: \text{SW}
ΛΕΤΙ	HOD: GC Hexachlorobenzene (EPA SW8	46 Method	8081B)		ZIIU IN	eviewei
	samples listed below were reviewed for ea ation findings worksheets.	ch of the fo	llowing vali	dation areas. Validatio	on findings are r	noted in attached
	Validation Area			Comm		
· I.	Sample receipt/Technical holding times	SW/A	cooler	temps= 14.4°C 13	1.3°C (IV	ime to cool
11.	GC Instrument Performance Check	N			•	
<u>III.</u>	Initial calibration/ICV	AIA	ICA		10	15202
IV.	Continuing calibration	A	ca	1 = 20%		
V.	Laboratory Blanks	A				
VI.	Field blanks	N				
VII.	Surrogate spikes / (5	A/A				
VIII.	Matrix spike/Matrix spike duplicates	A				
IX.	Laboratory control samples	Ä		US		
X.	Field duplicates	1				
XI.	Compound quantitation/RL/LOQ/LODs	N				
XII.	Target compound identification	N				
XIII.	System Performance	N				
ΧIV	Overall assessment of data					
lote:	N = Not provided/applicable R = Rin	o compounds sate eld blank	detected	D = Duplicate TB = Trip blank EB = Equipment blan	SB=Sourd OTHER: k	ce blank
	Client ID			Lab ID	Matrix	Date
1	LDW20-SS424	<u> </u>		20F0471-01	Sediment	06/26/20
2	LDW20-SS268			20F0471-02	Sediment	06/26/20
3	LDW20-SS266			20F0471-03	Sediment	06/26/20
4	LDW20-SS258			20F0471-04	Sediment	06/26/20
5	LDW20-SS257			20F0471-05	Sediment	06/26/20
6	LDW20-SS228			20F0471-06	Sediment	06/26/20
7	LDW20-SS236			20F0471-07	Sediment	06/26/20
8	LDW20-SS247			20F0471-08	Sediment	06/26/20
9	LDW20-SS424MS			20F0471-01MS	Sediment	06/26/20
10	LDW20-SS424MSD			20F0471-01MSD	Sediment	06/26/20
11_						
otes:	RTC and the second					
+	BIG0258-BK1			<u> </u>		
- 1			1 1		1 1	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: August 24, 2020

Parameters: Polychlorinated Biphenyls

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0471

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SS424	20F0471-01	Sediment	06/26/20
LDW20-SS268	20F0471-02	Sediment	06/26/20
LDW20-SS266	20F0471-03	Sediment	06/26/20
LDW20-SS258	20F0471-04	Sediment	06/26/20
LDW20-SS257	20F0471-05	Sediment	06/26/20
LDW20-SS228	20F0471-06	Sediment	06/26/20
LDW20-SS236	20F0471-07	Sediment	06/26/20
LDW20-SS247	20F0471-08	Sediment	06/26/20
LDW20-SS268MS	20F0471-02MS	Sediment	06/26/20
LDW20-SS268MSD	20F0471-02MSD	Sediment	06/26/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported between 12.3°C and 14.4°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Standard	Column	Compound	<u>%</u> D	Associated Samples	Flag	A or P
07/17/20	SIG0253-SCV1	2C	Aroclor-1260	27.9	All samples in SDG 20F0471	J (all detects)	А

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. Surrogate recoveries (%R) were not within QC limits for sample LDW20-SS257. No data were qualified for samples analyzed at greater than or equal to 5X dilution.

All internal standard areas and retention times were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

The sample results for detected compounds from the two columns were within 40% relative percent difference (RPD) with the following exceptions:

Sample	Compound	RPD	Flag	A or P
LDW20-SS247	Aroclor-1248	73.3	J (all detects)	Α

Raw data were not reviewed for Stage 2B validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D and RPD between two columns, data were qualified as estimated in eight samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Biphenyls - Data Qualification Summary - SDG 20F0471

Sample	Compound	Flag	A or P	Reason
LDW20-SS424 LDW20-SS268 LDW20-SS256 LDW20-SS257 LDW20-SS257 LDW20-SS228 LDW20-SS236 LDW20-SS247	Aroclor-1260	J (all detects)	А	Initial calibration verification (%D)
LDW20-SS247	Aroclor-1248	J (all detects)	А	Compound quantitation (RPD between two columns)

Duwamish AOC4

Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 20F0471

No Sample Data Qualified in this SDG

Duwamish AOC4

Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 20F0471

No Sample Data Qualified in this SDG

LDC i	#:48822B3b VALIDATI	ON COMP	LETENE	SS	WORKSHEET			Date: 68/19
	#: 20F0471	St	tage 2B					
Labor	atory: Analytical Resources, Inc.						Revi	Page: 1 of 1 ewer: 01/4
METI	HOD: GC Polychlorinated Biphenyls (EF	PA SW846 Me	ethod 808	2A)			2nd Revi	ewer:A
				·				
	amples listed below were reviewed for attitution findings worksheets.	each of the fo	llowing va	lida	tion areas. Validatio	า fir	ndings are note	ed in attached
valida	mon mangs worksneets.							
	Validation Area				Commo	ent	s	
1.	Sample receipt/Technical holding times	SW A	Cooler	+	tmps = 14,4°C	1:	2,3°C (1)	sufficient me to cool
11.	Initial calibration/ICV	A /SW	10A	ب د	20%		1CV & 20	
111.	Continuing calibration	A			20%			
IV.	Laboratory Blanks	A						
V.	Field blanks	N						
VI.	Surrogate spikes /\\$	SW/A	‡ 5		NQ-dil)			
VII.	Matrix spike/Matrix spike duplicates	À						
VIII.	Laboratory control samples	À		25	, SRM			
IX.	Field duplicates	N						
X.	Compound quantitation/RL/LOQ/LODs	SW						
XI.	Target compound identification	N						
XII	Overall assessment of data	A		_				
Note:	N = Not provided/applicable R = I	= No compounds Rinsate = Field blank	detected		D = Duplicate TB = Trip blank EB = Equipment blank		SB=Source b OTHER:	lank
	Client ID				Lab ID	T	Matrix	Date
1	LDW20-SS424				20F0471-01		Sediment	06/26/20
2	LDW20-SS268				20F0471-02	٤	Sediment	06/26/20
3	LDW20-SS266				20F0471-03	5	Sediment	06/26/20
4	LDW20-SS258				20F0471-04	5	Sediment	06/26/20
5	LDW20-SS257				20F0471-05	5	Sediment	06/26/20
6	LDW20-SS228		-		20F0471-06	5	Sediment	06/26/20
7	LDW20-SS236				20F0471-07	5	Sediment	06/26/20
8	LDW20-SS247				20F0471-08	<u></u> {	Sediment	06/26/20
9	LDW20-SS268MS				20F0471-02MS	5	Sediment	06/26/20
10	LDW20-SS268MSD				20F0471-02MSD	5	Sediment	06/26/20
11						floor		
12						\perp		
Notes:								
	BIG0259-BUX 2							

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A. alpha-BHC	K. Endrin	U. Toxaphene	EE. 2,4'-DDT	OO. trans-Heptachlor epoxide
B. beta-BHC	L. Endosulfan II	V. Aroclor-1016	FF. Hexachlorobenzene	PP. Mirex
C. delta-BHC	M. 4,4'-DDD	W. Aroclor-1221	GG. Chlordane	QQ çis-Chlordane
D. gamma-BHC	N. Endosulfan sulfate	X. Aroclor-1232	HH. Chlordane (Technical)	RR. trans-Chlordane
E. Heptachlor	O. 4,4'-DDT	Y. Aroclor-1242	II. Aroclor 1262	SS.
F. Aldrin	P. Methoxychlor	Z. Aroclor-1248	JJ. Aroclor 1268	тт.
G. Heptachlor epoxide	Q. Endrin ketone	AA. Aroclor-1254	KK. Oxychlordane	UU.
H. Endosulfan I	R. Endrin aldehyde	BB. Aroclor-1260	LL. trans-Nonachlor	vv
I. Dieldrin	S. alpha-Chlordane	CC. 2,4'-DDD	MM. cis-Nonachlor	ww.
J. 4,4'-DDE	T. gamma-Chlordane	DD. 2,4'-DDE	NN. cis-Heptachlor epoxide	xx.

Notes:		

48822836 LDC #:

Y/N N/A

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Reviewer: JVG 2nd Reviewer: _

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

What type of initial calibration verification calculation was performed? __%D or ___%R N N/A Was an initial calibration verification standard analyzed after each ICAL for each instrument?

Did the initial calibration verification standards meet the %D / %R validation criteria of <20.0% / 80-120%?

#		Standard ID SI G0253-SC	Detector/	Compound BB	%D (Limit ≤ 20.0)	Associated Samples	Qualifications
	07/17/20	SI 60253-SC	11 20	BB	27.9	All (Det)	J/W/A
							J/W/A (qual BB only)
							, J/-
					-		
					,		
						<u></u>	
							<u> </u>

LDC #: 48812 B36

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

of
JVG
9

METHOD:

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Level IV/D Only

X)N N/A

Were CRQLs adjusted for sample dilutions, dry weight factors, etc.?

y N N/A

Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

Did the percent difference of detected compounds between two columns./detectors <40%?

If no, please see findings bellow.

#	Compound Name	Sample ID	%RPD%D Between Two Columns/Detectors Limit (≤ 40%)	Qualifications
	Z	8	73,3	Qualifications J dets /A
	!			

Comments: See sample calculation verification worksheet for recalculations

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

August 20, 2020

Parameters:

Metals

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0471

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SS424	20F0471-01	Sediment	06/26/20
LDW20-SS268	20F0471-02	Sediment	06/26/20
LDW20-SS266	20F0471-03	Sediment	06/26/20
LDW20-SS258	20F0471-04	Sediment	06/26/20
LDW20-SS257	20F0471-05	Sediment	06/26/20
LDW20-SS228	20F0471-06	Sediment	06/26/20
LDW20-SS236	20F0471-07	Sediment	06/26/20
LDW20-SS247	20F0471-08	Sediment	06/26/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Arsenic, Cadmium, Chromium, Copper, Lead, Silver, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020A Mercury by EPA SW 846 Method 7471B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the methods.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Raw data were not reviewed for Stage 2B validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4 Metals - Data Qualification Summary - SDG 20F0471

No Sample Data Qualified in this SDG

Duwamish AOC4
Metals - Laboratory Blank Data Qualification Summary - SDG 20F0471

No Sample Data Qualified in this SDG

Duwamish AOC4 Metals - Field Blank Data Qualification Summary - SDG 20F0471

No Sample Data Qualified in this SDG

	#: <u>48822B4a</u>		LETENESS tage 2B	WORKSHEET	Γ	Date: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	atory: Analytical Resources, Inc.				R	Page: _ of _/ eviewer:
ИЕТЬ	HOD: Metals (EPA SW 846 Method 6020A	\/7471R)			2nd R	eviewer:
	105. Motalo (El 77 e 17 de motalos co207	v)				
	amples listed below were reviewed for ear	ch of the fo	ollowing valida	tion areas. Validat	ion findings are r	noted in attache
aliua	tion findings worksheets.					
	Validation Area			Comi	nents	
1.	Sample receipt/Technical holding times	AIA				
П.	ICP/MS Tune	A				
111.	Instrument Calibration	A				
IV.	ICP Interference Check Sample (ICS) Analysis	A				
V.	Laboratory Blanks	A				
VI.	Field Blanks	N				
VII.	Matrix Spike/Matrix Spike Duplicates	A	m5/0) (a0F1	3466)	
VIII.	Duplicate sample analysis	A	D V .	J	/	
IX.	Serial Dilution	N				
Χ.	Laboratory control samples	A	LCS			
XI.	Field Duplicates	\mathcal{N}_{\perp}				
XII.	Internal Standard (ICP-MS)	\mathcal{N}	norre	vieued		
XIII.	Sample Result Verification	N		/		
XIV	Overall Assessment of Data	17				
lote:	N = Not provided/applicable R = Rin	o compounds sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bla	SB=Sourc OTHER: ink	ce blank
	Client ID			Lab ID	Matrix	Date
1	LDW20-SS424			20F0471-01	Sediment	06/26/20
2	LDW20-SS268			20F0471-02	Sediment	06/26/20
3	LDW20-SS266			20F0471-03	Sediment	06/26/20
4	LDW20-SS258			20F0471-04	Sediment	06/26/20
5_	LDW20-SS257			20F0471-05	Sediment	06/26/20
6	LDW20-SS228			20F0471-06	Sediment	06/26/20
7	LDW20-SS236			20F0471-07	Sediment	06/26/20
8	LDW20-SS247			20F0471-08	Sediment	06/26/20
9						
10_						
11_						

Notes:

LDC #: 48822B4a

CVAA

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page 1 of 1 Reviewer:CR

All elements are applicable to each sample as noted below.

Hg

Sample ID	Target Analyte List
1 to 8	As, Cd, Cr, Cu, Pb, Ag, Zn, Hg
	Analysis Method
ICP	
ICP-MS	As, Cd, Cr, Cu, Pb, Ag, Zn

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

August 20, 2020

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0471

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
LDW20-SS424	20F0471-01	Sediment	06/26/20
LDW20-SS268	20F0471-02	Sediment	06/26/20
LDW20-SS266	20F0471-03	Sediment	06/26/20
LDW20-SS258	20F0471-04	Sediment	06/26/20
LDW20-SS257	20F0471-05	Sediment	06/26/20
LDW20-SS228	20F0471-06	Sediment	06/26/20
LDW20-SS236	20F0471-07	Sediment	06/26/20
LDW20-SS247	20F0471-08	Sediment	06/26/20
LDW20-SS424DUP	20F0471-01DUP	Sediment	06/26/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

Total Solids by Standard Method 2540G

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the methods. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4
Wet Chemistry - Data Qualification Summary - SDG 20F0471

No Sample Data Qualified in this SDG

Duwamish AOC4
Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 20F0471

No Sample Data Qualified in this SDG

Duwamish AOC4
Wet Chemistry - Field Blank Data Qualification Summary - SDG 20F0471

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 48822B6 Stage 2B SDG #: 20F0471 Laboratory: Analytical Resources, Inc. Reviewer: 2nd Reviewer: METHOD: (Analyte) TOC (EPA SW846 Method 9060A), Total Solids (SM 2540G) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. Validation Area **Comments** Sample receipt/Technical holding times Ш Initial calibration III. Calibration verification IV Laboratory Blanks ٧ Field blanks VI. Matrix Spike/Matrix Spike Duplicates VII. Duplicate sample analysis VIII. Laboratory control samples IX. Field duplicates X. Sample result verification Ν Overall assessment of data Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank N = Not provided/applicable R = Rinsate TB = Trip blank OTHER: FB = Field blank SW = See worksheet EB = Equipment blank

	Client ID	Lab ID	Matrix	Date
1	LDW20-SS424	20F0471-01	Sediment	06/26/20
2	LDW20-SS268	20F0471-02	Sediment	06/26/20
3	LDW20-SS266	20F0471-03	Sediment	06/26/20
4	LDW20-SS258	20F0471-04	Sediment	06/26/20
5	LDW20-SS257	20F0471-05	Sediment	06/26/20
6	LDW20-SS228	20F0471-06	Sediment	06/26/20
7	LDW20-SS236	20F0471-07	Sediment	06/26/20
8	LDW20-SS247	20F0471-08	Sediment	06/26/20
9	LDW20-SS424DUP	20F0471-01DUP	Sediment	06/26/20
10_				
11				
12				
13				
14				
15_				
Vote	S:			

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
1 to 8	Total solids, TOC
QC: 9	TS

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

August 24, 2020

Parameters:

Polychlorinated Dioxins/Dibenzofurans

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0471

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SS266	20F0471-03	Sediment	06/26/20
LDW20-SS258	20F0471-04	Sediment	06/26/20
LDW20-SS257	20F0471-05	Sediment	06/26/20
LDW20-SS228	20F0471-06	Sediment	06/26/20
LDW20-SS247	20F0471-08	Sediment	06/26/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for High Resolution Superfund Methods Data Review (April 2016). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) Method 1613B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported between 12.3°C and 14.4°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were within the QC limits for unlabeled compounds and labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration results were within the QC limits for unlabeled compounds and labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BIG0062-BLK1	07/09/20	1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	0.0645 ng/Kg 0.319 ng/Kg 0.727 ng/Kg 2.68 ng/Kg	All samples in SDG 20F0471

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Ongoing Precision Recovery/Standard Reference Materials

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
All samples in SDG 20F0471	All compounds reported as estimated maximum possible concentration (EMPC) and greater than the reporting limit.	J (all detects)	Α

Sample	Compound	Flag	A or P
All samples in SDG 20F0471	All compounds reported as estimated maximum possible concentration (EMPC) and less than the reporting limit.	U (all non-detects)	А
LDW20-SS266	All compounds flagged "X" due to chlorinated diphenyl ether (CDPE) interference.	J (all detects)	Α

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to compounds reported as EMPC and CDPE interference, data were qualified as estimated or not detected in five samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 20F0471

Sample	Compound	Flag	A or P	Reason
LDW20-SS266 LDW20-SS258 LDW20-SS257 LDW20-SS228 LDW20-SS247	All compounds reported as estimated maximum possible concentration (EMPC) and greater than the reporting limit.	J (all detects)	А	Compound quantitation (EMPC)
LDW20-SS266 LDW20-SS258 LDW20-SS257 LDW20-SS228 LDW20-SS247	All compounds reported as estimated maximum possible concentration (EMPC) and less than the reporting limit.	U (all non-detects)	А	Compound quantitation (EMPC)
LDW20-SS266	All compounds flagged "X" due to chlorinated diphenyl ether (CDPE) interference.	J (all detects)	А	Compound quantitation (CDPE interference)

Duwamish AOC4

Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 20F0471

No Sample Data Qualified in this SDG

Duwamish AOC4

Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG 20F0471

No Sample Data Qualified in this SDG

SDG # Labora METH The sa	#:	St kins/Dibenzo	tage 2B ofurans (EPA		Re 2nd Re	Date: 68/19 / Page: 1 of 1 eviewer: 7/4 eviewer: 7
∕alidat 	tion findings worksheets.	1 1				
	Validation Area	 		Comm		Tuci. Hi dest
1.	Sample receipt/Technical holding times	SWIA	cooler	temps = 14.4°C	12.36	time to cool
11.	HRGC/HRMS Instrument performance check	A				_
111.	Initial calibration/ICV	AA	ICAL	€ 20/35?	W E 0	ic limits
IV.	Continuing calibration	A	α_{λ}	le ac limits		
<u>V.</u>	Laboratory Blanks	SW	···.			
VI.	Field blanks	N				
VII.	Matrix spike/Matrix spike duplicates	N				
VIII.	Laboratory control samples	A	OPR	LES SRM		
IX.	Field duplicates	N				
X.	Labeled Compounds	A				
Xi.	Compound quantitation RL/LOQ/LODs	SM	EM	PC = Jdets		
XII.	Target compound identification	N				
XIII.	System performance	N				
XIV.	Overall assessment of data	À				
Note:	N = Not provided/applicable R = Rir	No compounds nsate Field blank	detected	D = Duplicate TB = Trip blank EB = Equipment blar	SB=Sourc OTHER: nk	e blank
	Client ID			Lab ID	Matrix	Date
1 L	LDW20-SS266			20F0471-03	Sediment	06/26/20
2 L	LDW20-SS258			20F0471-04	Sediment	06/26/20
	LDW20-SS257			20F0471-05	Sediment	06/26/20
	LDW20-SS228			20F0471-06	Sediment	06/26/20
	LDW20-SS247			20F0471-08	Sediment	06/26/20
6			-			
7						
8						
9						
10						
Votes:						
	BIG0062- BUK!					
					<u> </u>	
			1 1			

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:			

LDC	#:	4882	2 BZ	,

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	of_
Reviewer:	JVG
2nd Reviewer:	
·	

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Were all samples associated with a method blank?

Y N N/A Y N N/A Was a method blank performed for each matrix and whenever a sample extraction was performed?

Was the method blank contaminated?

Blank analysis date: 07/13/20 Blank extraction date: 07/09/20 Conc. units: 19/kg Associated samples:

Compound	Blank ID		Sample Identification						
	BIG0062-	BULL (9X)							
0	0.06457								
F	0.319 *	1,595							_
R	0.727 +	3.635							
Ğ	2.68	(3.4							
		•							
	* EMPC								

Blank extraction date:______ Blank analysis date:_ Associated Samples: Conc. units:

Compound	Blank ID	Sample Identification						
						37.000		
					_			

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

All contaminants within five times the method blank concentration were qualified as not detected, "U".

LDC #: 488221321

VALIDATION FINDINGS WORKSHEET <u>Compound Quantitation and Reported RLs</u>

Page: _	1 of 1
Reviewer:	JVG
nd Reviewer:	
	(

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were the correct labeled compound, quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and RLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

#	Date	Sample ID	Compound	Finding	Qualifications
		Αŋ		All results flagged as EMPC > RL	Jdets/A
				1 < RC	uД
		1		All results flagged "X" by the lab due to chlorinated	Jdets/A
				diphenyl ether (CDPE) interference	

Comments:		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

August 24, 2020

Parameters:

Semivolatiles

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0505

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date	
LDW20-SS423	20F0505-01	Sediment	06/30/20	
LDW20-SS423DL	20F0505-01DL	Sediment	06/30/20	

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 6.3°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits with the following exceptions:

SRM ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
BIG0254-SRM1	Naphthalene 2-Methylnaphthalene Acenaphthene	18.2 (41-159) 32.5 (51-149) 58.4 (59-141)	All samples in SDG 20F0505	J (all detects) UJ (all non-detects)	Р

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
LDW20-SS423	Fluoranthene Pyrene	Results exceeded calibration range.	Not reportable	-
LDW20-SS423DL	All compounds except Fluoranthene Pyrene	Results from undiluted analyses were more usable.	Not reportable	-

Due to SRM %R, data were qualified as estimated in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles - Data Qualification Summary - SDG 20F0505

Sample	Compound	Flag	A or P	Reason
LDW20-SS423	Naphthalene 2-Methylnaphthalene Acenaphthene	J (all detects) UJ (all non-detects)	Р	Standard reference materials (%R)
LDW20-SS423	Fluoranthene Pyrene	Not reportable	-	Overall assessment of data
LDW20-SS423DL	All compounds except Fluoranthene Pyrene	Not reportable	-	Overall assessment of data

Duwamish AOC4

Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 20F0505

No Sample Data Qualified in this SDG

Duwamish AOC4

Semivolatiles - Field Blank Data Qualification Summary - SDG 20F0505

No Sample Data Qualified in this SDG

SDG Labo	#: 48822C2a VALIDATIO #: 20F0505 ratory: Analytical Resources, Inc. HOD: GC/MS Semivolatiles (EPA SW 84	S	tage 2B	S WORKSH	EET	F 2nd F	Date:_ Page:_ Reviewer:_ Reviewer:_	68/19 1 of 1 174
The s	samples listed below were reviewed for eation findings worksheets.		·	tion areas. Va	alidation	findings are	noted in a	ittached
	Validation Area				Comme	nts .		
ı.	Sample receipt/Technical holding times	SW/A	Coster		.3°C		ricient .	time)
11.	GC/MS Instrument performance check	T A		7				
111.	Initial calibration/ICV	AIA	1941	= 20%	~	19	12 30%	
IV.	Continuing calibration	A'	CW	= 20/3	•			
V.	Laboratory Blanks	A						
VI.	Field blanks	7						
VII.	Surrogate spikes	A						
VIII.	Matrix spike/Matrix spike duplicates	2						
IX.	Laboratory control samples	SW	L	S SRN	1			
X.	Field duplicates	N						
XI.	Internal standards	A						
XII.	Compound quantitation RL/LOQ/LODs	N						
XIII.	Target compound identification	N						
XIV.		N						
XV.		SW						
Note:	N = Not provided/applicable R = Ri	No compounds insate Field blank	detected	D = Duplicate TB = Trip blar EB = Equipme		SB=Sour OTHER:	ce blank	
	Client ID			Lab ID		Matrix	Date	
1	LDW20-SS423			20F0505-01		Sediment	06/30/	20
2	101			1-010	<u>L</u>	L_L		
3								
4								
5								
6								
7								
8								
9								
Votes:	0.7.6. 01		- - - - - - - - - - 					
-	BIG0254-BIRL							
$\vdash \downarrow$								
		<u>.</u> <u></u>					····	
			1 1		l l			

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1. N-Nitrosodiethylamine
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1. N-Nitrosodi-n-butylamine
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1. N-Nitrosomethylethylamine
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1. N-Nitrosomorpholine
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1. N-Nitrosopyrrolidine
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1. Phenacetin
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1. 2-Acetylaminofluorene
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1. Pronamide
i. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	I1. Methyl methanesulfonate
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1. Ethyl methanesulfonate
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1. o,o',o"-Triethylphosphorothioate
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1. n-Phenylene diamine
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1. 1,4-Naphthoquinone
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1. N-Nitro-o-toluidine
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	OOOO. 1,2-Diphenylhydrazine	O1. 1,3,5-Trinitrobenzene
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1. Pentachlorobenzene
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1. 4-Aminobiphenyl
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1. 2-Naphthylamine
S. Naphṭhalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1. Triphenylene
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1. Octachlorostyrene
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU 2,3,4,6-Tetrachlorophenol	U1. Famphur
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachiorobenzene	V1. 1,4-phenylenediamine
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW 2-Picoline	W1. Methapyrilene
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX. 3-Methylcholanthrene	X1. Pentachloroethane
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. a,a-Dimethylphenethylamine	Y1. 3,3'-Dimethylbenzidine
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ. Hexachloropropene	Z1. o-Toluidine

LDC #: 48822-C2a

VALIDATION FINDINGS WORKSHEET <u>Laboratory Control Samples (LCS)</u> / SRM

Page:	of
Reviewer:	JVG
2nd Reviewer:	A

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

VN N/A

Was a LCS required?

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	BIG 0254-SRM1	S	18.2 (41-159)	()	()	All (ND+Det)	J/15/p
	•	الما	32.5 (51-149) 58.4 (59-141)	()	()		
		W GG	58.4 (59-H)	()	())	
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()			
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
				()	()_		

LDC#: 48822CZa

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

__of	1
JVG	
7	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

YN N/A

Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
		1	74 22	> cal rarge	J dets/A
			' '		
		2	All except YY, Z	z di)	1
			<u> </u>		
ļ					
<u> </u>		! 			
 					
ļ					
-					

Comments:			 			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

August 24, 2020

Parameters:

Semivolatiles

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0505

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SS423	20F0505-01	Sediment	06/30/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 6.3°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
06/26/20	N-Nitrosodiphenylamine	41.9	All samples in SDG 20F0505	UJ (all non-detects)	А

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
07/21/20	Pentachlorophenol	41.4	All samples in SDG 20F0505	J (all detects)	A

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits with the following exceptions:

SRM ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
BIG0254-SRM2	1,2-Dichlorobenzene	11.7 (17-184)	All samples in SDG 20F0505	UJ (all non-detects)	Р

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D, continuing calibration %D, and SRM %R, data were qualified as estimated in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Semivolatiles – Data Qualification Summary - SDG 20F0505

Sample	Compound	Flag	A or P	Reason
LDW20-SS423	N-Nitrosodiphenylamine	UJ (all non-detects)	А	Initial calibration verification (%D)
LDW20-SS423	Pentachlorophenol	J (all detects)	Α	Continuing calibration (%D)
LDW20-SS423	1,2-Dichlorobenzene	UJ (all non-detects)	Р	Standard reference materials (%R)

Duwamish AOC4
Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 20F0505

No Sample Data Qualified in this SDG

Duwamish AOC4 Semivolatiles - Field Blank Data Qualification Summary - SDG 20F0505

No Sample Data Qualified in this SDG

SDG #	#:48822C2b VALIDATIC #:20F0505 atory:_Analytical Resources, Inc. SVOA		LETENESS tage 2B	S WORKS	HEET	Re 2nd Re	Date: 68/19/ Page: _of_\frac{1}{2} viewer: _\frac{1}{2}\frac{1}{2}
METH	IOD: GC/MS Polynuclear Aromatic Hydr	ocarbo ns (E	EPA SW 846 I	Method 8270	E-SIM)	Zila i ke	vieweiA_
	amples listed below were reviewed for eation findings worksheets.	ach of the fo	ollowing valida	ition areas. \	/alidation	findings are no	oted in attached
	Validation Area				Commer	nts	
l.	Sample receipt/Technical holding times	SWIA	Looler	temp. =	6.30	Dus	ufficient)
11.	GC/MS Instrument performance check	A		•			
111.	Initial calibration/ICV	A ISW	1CAL =	20%	n	1005	30%
IV.	Continuing calibration	SW	ave	20%			
V.	Laboratory Blanks	A					
VI.	Field blanks	N					
VII.	Surrogate spikes	L A					
VIII.	Matrix spike/Matrix spike duplicates	N					
IX.	Laboratory control samples	SW	vo	SRA	1		
X.	Field duplicates	N					
XI.	Internal standards	A					
XII.	Compound quantitation RL/LOQ/LODs	N					
XIII.	Target compound identification	N					
XIV.	System performance	Ņ					
XV.	Overall assessment of data	A					
Note:	N = Not provided/applicable R = Ri	No compounds nsate Field blank	detected	D = Duplicat TB = Trip bla EB = Equipr	ank	SB=Source OTHER:	blank
	Client ID			Lab ID		Matrix	Date
1	LDW20-SS423			20F0505-01		Sediment	06/30/20
2							
3					· · · · · · · · · · · · · · · · · · ·		
4							
5							
6							
7							
8							
9							
Votes:							
	BIGORY-BUCZ						
[I	1	

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiophene	A1. N-Nitrosodiethylamine
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1. N-Nitrosodi-n-butylamine
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1. N-Nitrosomethylethylamine
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1. N-Nitrosomorpholine
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1. N-Nitrosopyrrolidine
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1. Phenacetin
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1. 2-Acetylaminofluorene
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1. Pronamide
I. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	I1. Methyl methanesulfonate
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1. Ethyl methanesulfonate
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1. o,o',o"-Triethylphosphorothioate
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1. n-Phenylene diamine
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1. 1,4-Naphthoquinone
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1. N-Nitro-o-toluidine
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	OOOO. 1,2-Diphenylhydrazine	O1. 1,3,5-Trinitrobenzene
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1. Pentachlorobenzene
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1. 4-Aminobiphenyl
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1. 2-Naphthylamine
S. Naphṭhalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1. Triphenylene
T, 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1. Octachlorostyrene
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU 2,3,4,6-Tetrachlorophenol	U1. Famphur
V. 4-Chloro-3-methylphenol	VV, Anthracene	VVV.Benzonaphthothiophene	VVVV. 1,2,4,5-Tetrachlorobenzene	V1. 1,4-phenylenediamine
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW 2-Picoline	W1. Methapyrilene
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX. 3-Methylcholanthrene	X1. Pentachioroethane
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY. a,a-Dimethylphenethylamine	Y1. 3,3'-Dimethylbenzidine
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ. Hexachloropropene	Z1. o-Toluidine

48022 C26 LDC#:

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Page:_	of	_
Reviewer:_	_JVG	
2nd Reviewer:_	9	_
		_

METHOD: GC/MS SVOA (EPA SW 846 Method 8270 → S/M)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A

Was an initial calibration verification standard analyzed after each ICAL for each instrument?

Were all %D within the validation criteria of ≤20/30% %D?

#	Date	Standard ID	Compound	Finding %D (Limit: <20.0%(30%)) 41.q	Associated Samples	Qualifications
	04/24/20	SIF 0393- SCV1	QQ	41.9	All (ND)	J/UJ/A
						3///
						·
<u> </u>						
<u> </u>						
	<u> </u>					
-						
<u> </u>	<u> </u>				<u> </u>	

LDC #: 48822 C2b

VALIDATION FINDINGS WORKSHEET Continuing Calibration

of
JVG
1

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours of sample analysis for each instrument? Y N N/A Y(N) N/A Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

Were all %D and RRFs within the validation criteria of ≤20 %D and ≥0.05 RRF?

#	/ N/A V	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit: <u>></u> 0.05)	Associated Samples	Qualifications
	07/21/20	NT10200721035	TT	41.4		All (Pet)	JUJA
	,						
						 	
							····

LDC #: 48822C2k

VALIDATION FINDINGS WORKSHEET <u>Laboratory Control Samples (LCS)</u> / SRM

Page: __of__ Reviewer: __JVG 2nd Reviewer: __<

METHOD: GC/MS BNA (EPA SW 846 Method 8270) -SIM)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A Was a LCS required?

Y(N)N/A Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	BIG0254-SRM2	F	11.7 (17-184)	()	()	A11 (ND2	JWA
			()	()	()	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
			()	()	()		
			()	()	()		
<u> </u>			()	()	()		
<u> </u>		* .	()	()	()		
			()	()	()		
			()	()	()		
			()		()		
			()	()	()		
L			()	()	()		
			()	()	()		
<u> </u>			()	()	()		
<u> </u>			()	()	()		
<u> </u>			()	()	()		
<u> </u>			()	()	()		
<u> </u>			()	()	()		
<u> </u>			()	()	()		
<u> </u>			()	()	()		
<u> </u>			()	()	()		
			()	()	()		
 			()	()	()		
<u> </u>			()	()	()		
<u> </u>			()	()	()		
<u> </u>			L()	()	1()		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: August 24, 2020

Parameters: Hexachlorobenzene

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0505

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date	
LDW20-SS423	20F0505-01	Sediment	06/30/20	

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Hexachlorobenzene by Environmental Protection Agency (EPA) SW 846 Method 8081B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 6.3°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. GC Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4

Hexachlorobenzene - Data Qualification Summary - SDG 20F0505

No Sample Data Qualified in this SDG

Duwamish AOC4

Hexachlorobenzene - Laboratory Blank Data Qualification Summary - SDG 20F0505

No Sample Data Qualified in this SDG

Duwamish AOC4

Hexachlorobenzene - Field Blank Data Qualification Summary - SDG 20F0505

No Sample Data Qualified in this SDG

SDG # .abora	etory: <u>Analytical Resources, Inc.</u>	St	tage 2B	S WORKSHEE	R	Date: 68/1 Page: of 1 eviewer: 10/1 eviewer: n
he sa	OD: GC Hexachlorobenzene (EPA SV amples listed below were reviewed for a confindings worksheets.		•	lation areas. Valida	tion findings are r	noted in attached
	Validation Area			Com	ments C	
l,	Sample receipt/Technical holding times	SW/A	Cooler	temp. = 6,30	C Insuf	ficient fine
II.	GC Instrument Performance Check	N.				
111.	Initial calibration/ICV	AIA	ICA	1 = 20% 1 = 20%	10	NS 207
IV.	Continuing calibration	I A	CU	JE 206		
V.	Laboratory Blanks	A				
VI.	Field blanks	N				
VII.	Surrogate spikes /\\$	A/A				
VIII.	Matrix spike/Matrix spike duplicates					
IX.	Laboratory control samples	Å		VCS		
X.	Field duplicates	1				
XI.	Compound quantitation/RL/LOQ/LODs	N				
XII.	Target compound identification	N				
XIII.	System Performance	N				
XIV	Overall assessment of data	A				
ote:	N = Not provided/applicable R = F	- No compounds Rinsate - Field blank	detected	D = Duplicate TB = Trip blank EB = Equipment bl	SB=Sourc OTHER: ank	ce blank
	Client ID			Lab ID	Matrix	Date
1 L	.DW20-SS423			20F0505-01	Sediment	06/30/20
2						
3						
5						
3						
,						
3						
,				-		
10	With the state of					
otes:						
	BIG0258-B1K1					
				and the second s		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Duwamish AOC4

LDC Report Date: August 24, 2020

Parameters: Polychlorinated Biphenyls

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0505

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date	
Sample Identification	luenuncauon	IVIAUIX	Date	
LDW20-SS423	20F0505-01	Sediment	06/30/20	

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for samples in this SDG were reported at 6.3°C upon receipt by the laboratory. Since the samples were received the same day that they were collected, time did not allow for sufficient cooling of the samples, therefore no data were qualified.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Standard	Column	Compound	%D	Associated Samples	Flag	A or P
07/17/20	SIG0253-SCV1	2C	Aroclor-1260	27.9	All samples in SDG 20F0505	J (all detects)	Α

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D, data were qualified as estimated in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Polychlorinated Biphenyls - Data Qualification Summary - SDG 20F0505

Sample	Compound	Flag	A or P	Reason
LDW20-SS423	Aroclor-1260	J (all detects)	А	Initial calibration verification (%D)

Duwamish AOC4

Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 20F0505

No Sample Data Qualified in this SDG

Duwamish AOC4

Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 20F0505

No Sample Data Qualified in this SDG

SDG # .abora	: 48822C3b VALIDATION: 20F0505 VALIDATION: Analytical Resources, Inc. OD: GC Polychlorinated Biphenyls (EF	Sta	ige 2B	S WORKSHEE	R	Date: 68/9 / Page: 1 of eviewer: 574 eviewer: 1
he sa	mples listed below were reviewed for eon findings worksheets.				ion findings are r	noted in attached
	Validation Area			Com	ments	
l.	Sample receipt/Technical holding times	SW/A	cooler	temp = 6.3	€ (±45	me to cool)
11.	Initial calibration/ICV	AISW	19AL S	,	1015 20%	
III.	Continuing calibration	I'A	900	= 206	-	
IV.	Laboratory Blanks	A				
V.	Field blanks					
VI.	Surrogate spikes	A/A				
VII.	Matrix spike/Matrix spike duplicates	N				
VIII.	Laboratory control samples	A	<u>\</u>	CS SRM		
IX.	Field duplicates	N		,		
X.	Compound quantitation/RL/LOQ/LODs	N				
XI.	Target compound identification	N	, m			
XII	Overall assessment of data	<u> </u>				
ote:	N = Not provided/applicable $R = F$	No compounds de Rinsate Field blank	etected	D = Duplicate TB = Trip blank EB = Equipment bla	SB=Source OTHER: ank	e blank
	lient ID			Lab ID	Matrix	Date
1 L	DW20-SS423			20F0505-01	Sediment	06/30/20
2						
3						
4	·	****				
5						
3						
7						
8						
9						
10			····			
11						
otes:						
	RTCOCC RIL.				T	
+	BIG259-Bikj			<u> </u>		
+-						
-			+			

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A. alpha-BHC	K. Endrin	U. Toxaphene	EE. 2,4'-DDT	OO. trans-Heptachlor epoxide
B. beta-BHC	L. Endosulfan II	V. Aroclor-1016	FF. Hexachlorobenzene	PP. Mirex
C. delta-BHC	M. 4,4'-DDD	W. Aroclor-1221	GG. Chlordane	QQ çis-Chlordane
D. gamma-BHC	N. Endosulfan sulfate	X. Aroclor-1232	HH. Chlordane (Technical)	RR. trans-Chlordane
E. Heptachlor	O. 4,4'-DDT	Y. Aroclor-1242	II. Aroclor 1262	SS.
F. Aldrin	P. Methoxychlor	Z. Aroclor-1248	JJ. Aroclor 1268	тт.
G. Heptachlor epoxide	Q. Endrin ketone	AA. Aroclor-1254	KK. Oxychlordane	UU.
H. Endosulfan I	R. Endrin aldehyde	BB. Aroclor-1260	LL. trans-Nonachior	vv
I. Dieldrin	S. alpha-Chlordane	CC. 2,4'-DDD	MM. cis-Nonachlor	ww.
J. 4,4'-DDE	T. gamma-Chlordane	DD. 2,4'-DDE	NN. cis-Heptachlor epoxide	XX.

Notes:	

LDC #: 48x 22C3b

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

of
JVG
7

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

What type of initial calibration verification calculation was performed? ___%D or ___%R

Was an initial calibration verification standard analyzed after each ICAL for each instrument?

<u>Y</u> N/N/A Did the initial calibration verification standards meet the %D / %R validation criteria of ≤20.0% / 80-120%?

#	Date	Standard ID	Detector/	Compound	%D (Limit ≤ 20.0)	Associated Samples	Qualifications
	67/17/20	SIG0253-5C1	11 2C	3B	27.9	All (Det)	J/WT/X
	117-1						J/UJ/A (qual BB only)
							1
\parallel							
 							
 							
-							
<u> </u>					<u> </u>		
 							
ļ							
 							
 				•			
ļ							

<u> </u>							
<u> </u>						4.40.44.4.40.004.4.40.004.4.40.40.40.40.	
						<u> </u>	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

August 20, 2020

Parameters:

Metals

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0505

	Laboratory Sample		Collection
Sample Identification	<u>Identification</u>	Matrix	Date
LDW20-SS423	20F0505-01	Sediment	06/30/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Arsenic, Cadmium, Chromium, Copper, Lead, Silver, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020A Mercury by EPA SW 846 Method 7471B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the methods.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Raw data were not reviewed for Stage 2B validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

Duwamish AOC4 Metals - Data Qualification Summary - SDG 20F0505

No Sample Data Qualified in this SDG

Duwamish AOC4 Metals - Laboratory Blank Data Qualification Summary - SDG 20F0505

No Sample Data Qualified in this SDG

Duwamish AOC4 Metals - Field Blank Data Qualification Summary - SDG 20F0505

No Sample Data Qualified in this SDG

SDG # _abora	t:48822C4aVALIDATION t:20F0505 atory:_Analytical Resources, Inc.	S	PLETENESS Stage 2B	S WORKSHEET	R 2nd R	Date: 497 Page: of \ eviewer: 7
	amples listed below were reviewed for eaction findings worksheets.	ch of the f	ollowing valida	tion areas. Validatio	on findings are r	noted in attached
	Validation Area			Comm	ents	
I.	Sample receipt/Technical holding times	AA				
11.	ICP/MS Tune	Δ		·		
111.	Instrument Calibration	<i>A</i>				
IV.	ICP Interference Check Sample (ICS) Analysis	A				
V.	Laboratory Blanks	A,				
VI.	Field Blanks	\mathcal{N}				
VII.	Matrix Spike/Matrix Spike Duplicates	A	m5/6	(aofose	9)	
VIII.	Duplicate sample analysis	A	núr	7		
IX.	Serial Dilution	\mathcal{N}				
X.	Laboratory control samples	A	LCS			
XI.	Field Duplicates	$\dot{\mathcal{N}}$				
XII.	Internal Standard (ICP-MS)	· //	not rea	ieved		
XIII.	Sample Result Verification	N				
XIV	Overall Assessment of Data	A				
lote:	N = Not provided/applicable R = Rins	o compound sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blan	SB=Sourc OTHER: k	ce blank
	Client ID			Lab ID	Matrix	Date
1 l	_DW20-SS423			20F0505-01	Sediment	06/30/20
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12 lotes:						

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
	1 As, Cd, Cr, Cu, Pb, Ag, Zn, Hg
	
L	Analysis Method
ICP	
ICP-MS	As, Cd, Cr, Cu, Pb, Ag, Zn
CVAA	Hg

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Duwamish AOC4

LDC Report Date:

August 20, 2020

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 20F0505

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
LDW20-SS423	20F0505-01	Sediment	06/30/20
LDW20-SS423MS	20F0505-01MS	Sediment	06/30/20
LDW20-SS423DUP1	20F0505-01DUP1	Sediment	06/30/20
LDW20-SS423DUP2	20F0505-01DUP2	Sediment	06/30/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Lower Duwamish Waterway Quality Assurance Project Plan for Remedial Design of Upper Reach: Pre-Design Investigation (May 2020) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

Total Solids by Standard Method 2540G

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	%R (Limits)	Flag	A or P
LDW20-SS423MS (All samples in SDG 20F0505)	Total organic carbon	138 (75-125)	J (all detects)	А

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the methods. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to MS %R, data were qualified as estimated in three samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Duwamish AOC4 Wet Chemistry - Data Qualification Summary - SDG 20F0505

Sample	Analyte	Flag	A or P	Reason
LDW20-SS423 LDW20-SS423DUP1 LDW20-SS423DUP2	Total organic carbon	J (all detects)	А	Matrix spike (%R)

Duwamish AOC4

Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 20F0505

No Sample Data Qualified in this SDG

Duwamish AOC4

Wet Chemistry - Field Blank Data Qualification Summary - SDG 20F0505

No Sample Data Qualified in this SDG

DG#	: VALIDAT :t:		. ETENES age 2B	S WORKSHEET	R 2nd R	Date: 8/19/ Page: of deviewer: ceviewer:	
ne sa	OD: (Analyte) TOC (EPA SW846 Meamples listed below were reviewed for ion findings worksheets.				findings are ı	noted in attache	
	Validation Area		Comments				
1.	Sample receipt/Technical holding times	AA					
11	Initial calibration	A					
III.	Calibration verification	A					
IV	Laboratory Blanks	A					
V	Field blanks	\mathcal{N}					
VI.	Matrix Spike/Matrix Spike Duplicates	SW					
VII.	Duplicate sample analysis	A					
VIII.	Laboratory control samples	A	LCS .	SRM			
IX.	Field duplicates	\mathcal{N}					
X.	Sample result verification	N					
ΧI	Overall assessment of data	K					
te:	N = Not provided/applicable R =	= No compounds Rinsate = Field blank	detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Sourc	ce blank	
	Client ID			Lab ID	Matrix	Date	
L	_DW20-SS423			20F0505-01	Sediment	06/30/20	
L	.DW20-SS423MS			20F0505-01MS	Sediment	06/30/20	
L	DW20-SS423DUP 7_			20F0505-01DUP1_	Sediment	06/30/20	
L	DW20-SS423FRP DVD2			20F0505-01FRP	Sediment	06/30/20	
\perp							
\perp							
\perp							
T							
2							

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List		
	1 Total solids, TOC		
QC: 2	TOC		
	3 TS, TOC		
	4 TOC		

METHOD: Inorganics

MS analysis was performed by the laboratory. All MS percent recoveries (%R) were within the acceptable limits with the following exceptions.

MS ID	Matrix	Analyte	MS %R	%R Limit	Assocaited Samples	Qualification	Det/ND
	2 s	TOC	138		All	Jdet/A	Det

Comments: